1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
use embedded_hal::{delay::DelayNs, digital::OutputPin, i2c::{NoAcknowledgeSource, SevenBitAddress, TenBitAddress}};

use crate::{gpio::{BidirectionPin, BidirectionPinMode}, tick::Delay};

pub const FREQ_I2C_SCL_100K: u32 = 100_000;
pub const FREQ_I2C_SCL_400K: u32 = 400_000;

/// Represents errors that can occur during I2C communication.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum SoftI2CError {
    /// Error when addressing the device.
    Address,
    /// Error when writing data.
    WriteData,
}

/// Represents I2C addresses.
#[derive(Debug, Clone, Copy)]
pub enum SoftI2CAddr {
    /// A 7-bit address.
    SevenBitAddress(u8),
    /// A 10-bit address.
    TenBitAddress(u16)
}

/// A software implementation of the I2C interface.
/// 
/// # Examples
/// ```
/// use crate::gpio::{BidirectionPin, BidirectionPinMode};
/// use crate::tick::Delay;
/// 
/// let scl = /* Initialize SCL pin */;
/// let sda = /* Initialize SDA pin */;
/// let i2c = SoftI2C::new(scl, sda);
/// ```
pub struct SoftI2C<C, D, const CLK_HZ: u32> {
    /// SCL pin.
    scl: C,
    /// SDA pin.
    sda: D,
    /// Delay utility for timing.
    delay: Delay,
}

impl<C, D, const CLK_HZ: u32> SoftI2C<C, D, CLK_HZ>
where 
    C: OutputPin,
    D: BidirectionPin,
{
    /// Creates a new `SoftI2C` instance with the given SCL and SDA pins.
    pub fn new(mut scl: C, sda: D) -> Self {
        let delay = Delay::new();
        scl.set_high().ok();
        sda.mode_ctrl(BidirectionPinMode::OutOD);
        sda.set(true);

        SoftI2C { scl, sda, delay }
    }

    /// Delays for a short period.
    #[inline]
    fn i2c_delay(&mut self) {
        self.delay.delay_ns(500_000_000/CLK_HZ);
    }

    /// Sets the SCL line high.
    fn scl_hi(&mut self) {
        self.scl.set_high().ok();
        self.i2c_delay();
    }

    /// Sets the SCL line low.
    fn scl_lo(&mut self) {
        self.scl.set_low().ok();
        self.i2c_delay();
    }

    /// Sets the SDA line high.
    fn sda_hi(&mut self) {
        self.sda.set(true);
        self.i2c_delay();
    }

    /// Sets the SDA line low.
    fn sda_lo(&mut self) {
        self.sda.set(false);
        self.i2c_delay();
    }

    /// Switches the SDA pin to input mode.
    #[inline]
    fn sda_input(&mut self) {
        self.sda.mode_ctrl(BidirectionPinMode::InFloating);
    }

    /// Switches the SDA pin to output mode.
    #[inline]
    fn sda_output(&mut self) {
        self.sda.mode_ctrl(BidirectionPinMode::OutOD);
    }

    /// Generates a START condition.
    fn start(&mut self) {
        self.sda_output();
        self.sda.set(true);
        self.scl_hi();
        self.sda_lo();
        self.scl_lo();
    }

    /// Generates a STOP condition.
    fn stop(&mut self) {
        self.sda_output();
        self.sda_lo();
        self.scl_hi();
        self.sda.set(true);
    }

    /// Generates a clock pulse.
    fn clock_pulse(&mut self) {
        self.scl_hi();
        self.scl_lo();
    }

    /// Writes a byte to the I2C bus.
    fn write_byte(&mut self, mut data_byte: u8) {
        self.sda_output();
        for _ in 0..8 {
            self.sda.set(data_byte & 0x80 != 0);
            data_byte <<= 1;
            self.clock_pulse();
        }
    }

    /// Reads a single bit from the I2C bus.
    fn read_bit(&mut self) -> bool {
        self.scl_hi();
        let sda_bit = self.sda.get();
        self.scl_lo();

        sda_bit
    }

    /// Reads a byte from the I2C bus.
    fn read_byte(&mut self) -> u8 {
        let mut out_byte = 0;

        self.sda_input();
        for _ in 0..8 {
            out_byte <<= 1;
            out_byte |= (self.read_bit() as u8) & 1;
        }

        out_byte
    }

    /// Reads an acknowledge bit.
    fn read_ack(&mut self, err: SoftI2CError) -> Result<(), SoftI2CError> {
        self.sda_input();
        if self.read_bit() {
            self.stop();
            Err(err)
        } else {
            Ok(())
        }
    }

    /// Generates a repeated start condition.
    fn mak(&mut self) {
        self.sda_output();
        self.sda_lo();
        self.clock_pulse();
    }

    /// Generates a repeated stop condition.
    fn nmak(&mut self) {
        self.sda_output();
        self.sda_hi();
        self.clock_pulse();
    }

    /// Sends the device address over the I2C bus.
    fn address(&mut self, address: SoftI2CAddr, is_read: bool) -> Result<(), SoftI2CError> {
        let r_w_bit = if is_read { 1 } else { 0 };

        match address {
            SoftI2CAddr::SevenBitAddress(addr) => {
                self.write_byte((addr << 1) | r_w_bit);
                self.read_ack(SoftI2CError::Address)?
            },
            SoftI2CAddr::TenBitAddress(addr) => {
                let h_addr = ((((addr >> 7) as u8 & 0xFE) | r_w_bit) & 0x07) | 0xF0;
                let l_addr = (addr & 0xFF) as u8;
                for byte in [h_addr, l_addr] {
                    self.write_byte(byte);
                    self.read_ack(SoftI2CError::Address)?
                }
            },
        }
        Ok(())
    }

    /// Writes bytes and reads bytes over the I2C bus.
    /// 
    /// # Examples
    /// ```
    /// let mut buffer = [0; 4];
    /// i2c.soft_i2c_write_read(SoftI2CAddr::SevenBitAddress(0x48), &[0x00, 0x01], &mut buffer)?;
    /// assert_eq!(buffer, [0x02, 0x03, 0x04, 0x05]);
    /// ```
    /// ``` text
    /// Master: ST SAD+W     O0     O1     ... OM     SR SAD+R        MAK    MAK ...    NMAK SP
    /// Slave:           SAK    SAK    SAK ...    SAK          SAK I0     I1     ... IN
    /// ```
    pub fn soft_i2c_write_read(&mut self, address: SoftI2CAddr, write: &[u8], read: &mut [u8]) -> Result<(), SoftI2CError> {
        self.start();
        self.address(address, false)?;

        for i in 0..write.len() {
            self.write_byte(write[i]);
            self.read_ack(SoftI2CError::WriteData)?;
        }

        self.soft_i2c_read(address, read)
    }

    /// Writes bytes over the I2C bus.
    /// 
    /// # Examples
    /// ```
    /// i2c.soft_i2c_write(SoftI2CAddr::SevenBitAddress(0x48), &[0x00, 0x01])?;
    /// ```
    ///  ``` text
    /// Master: ST SAD+W     B0     B1     ... BN     SP
    /// Slave:           SAK    SAK    SAK ...    SAK
    /// ```
    pub fn soft_i2c_write(&mut self, address: SoftI2CAddr, write: &[u8]) -> Result<(), SoftI2CError> {
        self.start();
        self.address(address, false)?;

        for i in 0..write.len() {
            self.write_byte(write[i]);
            self.read_ack(SoftI2CError::WriteData)?;
        }
        self.stop();

        Ok(())
    }

    /// Reads bytes over the I2C bus.
    /// 
    /// # Examples
    /// ```
    /// let mut buffer = [0; 4];
    /// i2c.soft_i2c_read(SoftI2CAddr::SevenBitAddress(0x48), &mut buffer)?;
    /// assert_eq!(buffer, [0x02, 0x03, 0x04, 0x05]);
    /// ```
    /// ``` text
    /// Master: ST SAD+R        MAK    MAK ...    NMAK SP
    /// Slave:           SAK B0     B1     ... BN
    /// ```
    pub fn soft_i2c_read(&mut self, address: SoftI2CAddr, read: &mut [u8]) -> Result<(), SoftI2CError> {
        self.start();
        self.address(address, true)?;

        for i in 0..read.len() {
            read[i] = self.read_byte();
            if i < read.len() - 1 {
                self.mak();
            } else {
                self.nmak();
            }
        }
        self.stop();

        Ok(())
    }
}

impl embedded_hal::i2c::Error for SoftI2CError {
    fn kind(&self) -> embedded_hal::i2c::ErrorKind {
        match *self {
            SoftI2CError::Address => embedded_hal::i2c::ErrorKind::NoAcknowledge(NoAcknowledgeSource::Address),
			SoftI2CError::WriteData => embedded_hal::i2c::ErrorKind::NoAcknowledge(NoAcknowledgeSource::Data),
        }
    }
}

impl<C: OutputPin, D: BidirectionPin, const CLK_HZ: u32> embedded_hal::i2c::ErrorType for SoftI2C<C, D, CLK_HZ> {
    type Error = SoftI2CError;
}

impl<C: OutputPin, D: BidirectionPin, const CLK_HZ: u32> embedded_hal::i2c::I2c<SevenBitAddress> for SoftI2C<C, D, CLK_HZ> {
    fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
        self.soft_i2c_read(SoftI2CAddr::SevenBitAddress(address), read)
    }

    fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
        self.soft_i2c_write(SoftI2CAddr::SevenBitAddress(address), write)
    }

    fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
        self.soft_i2c_write_read(SoftI2CAddr::SevenBitAddress(address), write, read)
    }

    fn transaction(
        &mut self,
        _address: u8,
        _operations: &mut [embedded_hal::i2c::Operation<'_>],
    ) -> Result<(), Self::Error> {
        todo!();
    }
}

impl<C: OutputPin, D: BidirectionPin, const CLK_HZ: u32> embedded_hal::i2c::I2c<TenBitAddress> for SoftI2C<C, D, CLK_HZ> {
    fn read(&mut self, address: u16, read: &mut [u8]) -> Result<(), Self::Error> {
        self.soft_i2c_read(SoftI2CAddr::TenBitAddress(address), read)
    }

    fn write(&mut self, address: u16, write: &[u8]) -> Result<(), Self::Error> {
        self.soft_i2c_write(SoftI2CAddr::TenBitAddress(address), write)
    }

    fn write_read(&mut self, address: u16, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
        self.soft_i2c_write_read(SoftI2CAddr::TenBitAddress(address), write, read)
    }

    fn transaction(
        &mut self,
        _address: u16,
        _operations: &mut [embedded_hal::i2c::Operation<'_>],
    ) -> Result<(), Self::Error> {
        todo!();
    }
}