1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
use core::marker::PhantomData;
use crate::ll_api::{ll_cmd::*, GpioInitFlag, PortNum};
trait PortModeFlag {
fn to_flag(&self) -> GpioInitFlag;
}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum PortModeInput {
InFloating,
InPullUp,
InPullDown,
}
impl PortModeFlag for PortModeInput {
fn to_flag(&self) -> GpioInitFlag {
match self {
PortModeInput::InFloating => GpioInitFlag::InFloating,
PortModeInput::InPullUp => GpioInitFlag::InPU,
PortModeInput::InPullDown => GpioInitFlag::InPD,
}
}
}
pub enum PortModeOutput {
OutOD,
OutPP,
}
impl PortModeFlag for PortModeOutput {
fn to_flag(&self) -> GpioInitFlag {
match self {
PortModeOutput::OutOD => GpioInitFlag::OutOD,
PortModeOutput::OutPP => GpioInitFlag::OutPP,
}
}
}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
#[repr(C)]
pub struct PortReg {
/// Port input data register
idr: *mut u16,
/// Port output data register
odr: *mut u16,
/// Port bit set register
bsr: *mut u16,
/// Port bit reset register
bcr: *mut u16,
}
pub struct InputPort;
pub struct OutputPort;
pub struct Port<MODE> {
gpio: PortNum,
mask: u16,
regs: PortReg,
_mode: PhantomData<MODE>,
}
impl Port<()> {
/// Creates a new GPIO port instance.
///
/// # Arguments
/// * `gpio` - The port number.
/// * `mask` - A bit mask specifying which pins are part of this port.
///
/// # Returns
/// A new `Port` instance with uninitialized mode.
pub fn new(gpio: PortNum, mask: u16) -> Port<()> {
let regs: PortReg = PortReg {
idr: core::ptr::null_mut::<u16>(),
odr: core::ptr::null_mut::<u16>(),
bsr: core::ptr::null_mut::<u16>(),
bcr: core::ptr::null_mut::<u16>(),
};
let port = Port {
gpio,
mask,
regs,
_mode: PhantomData,
};
// Initialize the port registers.
ll_invoke_inner!(
INVOKE_ID_GPIO_GET_PORT_REG,
&(port.regs) as *const _ as usize
);
port
}
/// Converts the port to an input mode.
///
/// # Arguments
/// * `mode` - The input mode configuration.
///
/// # Returns
/// A new `Port` instance configured as an input port.
pub fn into_input(&self, mode: PortModeInput) -> Port<InputPort> {
let pin_mode = mode.to_flag();
self.port_init(pin_mode);
Port {
gpio: self.gpio,
mask: self.mask,
regs: self.regs.clone(),
_mode: PhantomData,
}
}
/// Converts the port to an output mode.
///
/// # Arguments
/// * `mode` - The output mode configuration.
///
/// # Returns
/// A new `Port` instance configured as an output port.
pub fn into_output(&self, mode: PortModeOutput) -> Port<OutputPort> {
let pin_mode = mode.to_flag();
self.port_init(pin_mode);
Port {
gpio: self.gpio,
mask: self.mask,
regs: self.regs.clone(),
_mode: PhantomData,
}
}
/// Initializes individual pins on the port according to the given mode.
///
/// # Arguments
/// * `mode` - The initialization flag for the pins.
fn port_init(&self, mode: GpioInitFlag) {
for pin in 0..16 {
if (self.mask & (1 << pin)) > 0 {
ll_invoke_inner!(INVOKE_ID_GPIO_INIT, self.gpio, pin, mode);
}
}
}
}
impl Port<OutputPort> {
/// Sets the specified bits of the output register without checking bounds or validity.
///
/// # Safety
/// This function must only be called when it is safe to modify the output register directly.
#[inline]
pub unsafe fn set_bits_uncheck(&mut self, bits: u16) {
core::ptr::write_volatile(self.regs.bsr, bits)
}
/// Clears the specified bits of the output register without checking bounds or validity.
///
/// # Safety
/// This function must only be called when it is safe to modify the output register directly.
#[inline]
pub unsafe fn clr_bits_uncheck(&mut self, bits: u16) {
core::ptr::write_volatile(self.regs.bcr, bits);
}
/// Reads the current value of the output register without checking bounds or validity.
///
/// # Safety
/// This function must only be called when it is safe to read from the output register directly.
#[inline]
pub unsafe fn read_output_bits_uncheck(&mut self) -> u16 {
core::ptr::read_volatile(self.regs.odr)
}
/// Writes a value to the output register without checking bounds or validity.
///
/// # Safety
/// This function must only be called when it is safe to modify the output register directly.
#[inline]
pub unsafe fn write_bits_uncheck(&mut self, bits: u16) {
core::ptr::write_volatile(self.regs.odr, bits);
}
/// Sets the specified bits of the output register, applying the bit mask.
pub fn set_bits(&mut self, bits: u16) {
if !self.regs.bsr.is_null() {
unsafe { self.set_bits_uncheck(bits & self.mask) }
} else {
let read = self.read_output_bits();
self.write_bits(bits | read);
}
}
/// Clears the specified bits of the output register, applying the bit mask.
pub fn clr_bits(&mut self, bits: u16) {
if !self.regs.bcr.is_null() {
unsafe { self.clr_bits_uncheck(bits & self.mask) }
} else {
let read = self.read_output_bits();
self.write_bits(!bits & read);
}
}
/// Reads the current value of the output register, applying the bit mask.
pub fn read_output_bits(&mut self) -> u16 {
if !self.regs.odr.is_null() {
return unsafe { self.read_output_bits_uncheck() } & self.mask;
}
return 0;
}
/// Writes a value to the output register, applying the bit mask.
pub fn write_bits(&mut self, bits: u16) {
if !self.regs.odr.is_null() {
unsafe {
let read = self.read_output_bits_uncheck() & !self.mask;
self.write_bits_uncheck((bits & self.mask) | read);
}
}
}
}
impl Port<InputPort> {
/// Reads the current value of the input register without checking bounds or validity.
///
/// # Safety
/// This function must only be called when it is safe to read from the input register directly.
#[inline]
pub unsafe fn read_input_bits_uncheck(&mut self) -> u16 {
core::ptr::read_volatile(self.regs.idr)
}
/// Reads the current value of the input register, applying the bit mask.
pub fn read_input_bits(&mut self) -> u16 {
if !self.regs.idr.is_null() {
return unsafe { self.read_input_bits_uncheck() } & self.mask;
}
return 0;
}
}
impl<MODE> embedded_hal::digital::ErrorType for Port<MODE> {
type Error = core::convert::Infallible;
}
impl embedded_hal::digital::OutputPin for Port<OutputPort> {
#[inline(always)]
fn set_high(&mut self) -> Result<(), Self::Error> {
self.set_bits(self.mask);
Ok(())
}
#[inline(always)]
fn set_low(&mut self) -> Result<(), Self::Error> {
self.clr_bits(self.mask);
Ok(())
}
}
impl embedded_hal::digital::StatefulOutputPin for Port<OutputPort> {
#[inline(always)]
fn is_set_high(&mut self) -> Result<bool, Self::Error> {
Ok(self.read_output_bits() > 0)
}
#[inline(always)]
fn is_set_low(&mut self) -> Result<bool, Self::Error> {
Ok(self.read_output_bits() == 0)
}
}
impl embedded_hal::digital::InputPin for Port<InputPort> {
#[inline(always)]
fn is_high(&mut self) -> Result<bool, Self::Error> {
Ok(self.read_input_bits() > 0)
}
#[inline(always)]
fn is_low(&mut self) -> Result<bool, Self::Error> {
Ok(self.read_input_bits() == 0)
}
}