1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
use crate::ll_api::ll_cmd::*;
use embedded_hal::delay::DelayNs;
use fugit::{Duration, TimerDurationU32};
use portable_atomic::{AtomicU32, Ordering};
pub const TICK_FREQ_HZ: u32 = crate::tick_freq_hz::TICK_FREQ_HZ;
#[cfg(not(feature = "tick-size-64bit"))]
pub type TickType = u32;
#[cfg(feature = "tick-size-64bit")]
pub type TickType = u64;
static SYS_TICK_0: AtomicU32 = AtomicU32::new(0);
#[cfg(feature = "tick-size-64bit")]
static SYS_TICK_1: AtomicU32 = AtomicU32::new(0);
#[no_mangle]
#[inline]
/// An unsafe external C function that increments the system tick counter.
///
/// This function is called by a hardware interrupt to update the system's tick count.
/// Depending on the build features, it supports either 32-bit or 64-bit tick counters.
///
unsafe extern "C" fn sys_tick_inc() {
// Increment the low-order 32-bit tick counter atomically.
#[cfg(any(feature = "tick-size-64bit", feature = "embassy"))]
let sys_tick = SYS_TICK_0.fetch_add(1, Ordering::Relaxed);
// Increment the low-order 32-bit tick counter using a method compatible with non-64bit environments.
#[cfg(not(any(feature = "tick-size-64bit", feature = "embassy")))]
SYS_TICK_0.add(1, Ordering::Relaxed);
// Handle 64-bit tick overflow and update the high-order 32-bit tick counter.
#[cfg(feature = "tick-size-64bit")]
let sys_tick = if sys_tick == u32::MAX {
let tick_1 = SYS_TICK_1.fetch_add(1, Ordering::Release);
((tick_1 as u64) << 32) | (sys_tick as u64)
} else {
let tick_1 = SYS_TICK_1.load(Ordering::Relaxed);
((tick_1 as u64) << 32) | (sys_tick as u64)
};
// If the 'embassy' feature is enabled, check for any alarms that need to be triggered.
#[cfg(feature = "embassy")]
tick_time_driver::check_alarm(sys_tick);
}
/// Represents a point in time as measured by the system tick counter.
///
/// This struct is used to keep track of time in terms of ticks, which can be compared or used to measure elapsed time.
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Default)]
pub struct Tick(TickType);
impl Tick {
/// Returns the current system tick value.
///
/// # Examples
/// ```
/// let current_tick = Tick::now();
/// ```
pub fn now() -> Self {
// For 64-bit ticks, ensure we get a consistent snapshot of both high and low parts.
#[cfg(feature = "tick-size-64bit")]
loop {
let t0 = SYS_TICK_1.load(Ordering::SeqCst);
let t = SYS_TICK_0.load(Ordering::SeqCst);
let t1 = SYS_TICK_1.load(Ordering::SeqCst);
if t0 == t1 {
break Tick(((t0 as u64) << 32) | (t as u64));
}
}
// For 32-bit ticks, simply load the tick counter.
#[cfg(not(feature = "tick-size-64bit"))]
Tick(SYS_TICK_0.load(Ordering::Relaxed))
}
/// Computes the number of ticks elapsed since the creation of this `Tick` instance.
///
/// # Examples
/// ```
/// let start_tick = Tick::now();
/// let elapsed_ticks = start_tick.elapsed();
/// ```
pub fn elapsed(self) -> TickType {
if let Some(tick) = Self::now().0.checked_sub(self.0) {
tick
} else {
TickType::MAX
}
}
pub const fn with_value(value: TickType) -> Self {
Tick(value)
}
pub fn elapsed_time(self) -> Duration<TickType, 1, TICK_FREQ_HZ> {
let tick = if let Some(res) = Self::now().0.checked_sub(self.0) {
res
} else {
TickType::MAX
};
Duration::<TickType, 1, TICK_FREQ_HZ>::from_ticks(tick)
}
}
impl core::ops::Add for Tick {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
Tick(self.0 + rhs.0)
}
}
impl core::ops::Sub for Tick {
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
Tick(self.0 - rhs.0)
}
}
/// A delay utility that allows for precise timing delays based on a specified tick frequency.
///
/// This struct provides methods to create a delay object and then use it to delay for a specific amount of time.
/// The delay is implemented using the system's tick counter and can be configured for different frequencies.
///
/// # Examples
/// ```
/// let mut delay = Delay::new(); // Create a delay object for a 1000 Hz tick frequency.
/// delay.delay_ms(500); // Delay for 500 milliseconds.
/// ```
pub struct Delay;
impl Delay {
/// Creates a new `Delay` instance for the specified tick frequency.
///
/// # Examples
/// ```
/// let mut delay = Delay::new(); // Create a delay object for a 1000 Hz tick frequency.
/// ```
pub fn new() -> Self {
Delay
}
}
/// Trait implementation for delaying in nanoseconds.
impl DelayNs for Delay {
/// Delays for a specified number of nanoseconds.
///
/// # Examples
/// ```
/// let mut delay = Delay::new();
/// delay.delay_ns(1_000_000); // Delay for 1 millisecond (1,000,000 nanoseconds).
/// ```
#[inline]
fn delay_ns(&mut self, ns: u32) {
ll_invoke_inner!(INVOKE_ID_DELAY_NANO, ns);
}
/// Delays for a specified number of milliseconds.
///
/// # Examples
/// ```
/// let mut delay = Delay::new();
/// delay.delay_ms(500); // Delay for 500 milliseconds.
/// ```
#[inline]
fn delay_ms(&mut self, ms: u32) {
let ms_tick = TimerDurationU32::<TICK_FREQ_HZ>::millis(ms).ticks();
let start = Tick::now();
loop {
unsafe {
core::arch::asm!("wfi");
}
if (start.elapsed() as u32) >= ms_tick {
break;
}
}
}
}
#[cfg(feature = "embassy")]
mod tick_time_driver {
use core::cell::Cell;
use critical_section::Mutex;
use embassy_time_driver::{AlarmHandle, Driver};
use portable_atomic::{AtomicBool, Ordering};
struct AlarmState {
timestamp: Cell<super::TickType>,
callback: Cell<Option<(fn(*mut ()), *mut ())>>,
}
unsafe impl Send for AlarmState {}
const DUMMY_ALARM: AlarmState = AlarmState {
timestamp: Cell::new(0),
callback: Cell::new(None),
};
struct TimerDriver {
alarms: Mutex<AlarmState>,
allocated: AtomicBool,
}
embassy_time_driver::time_driver_impl!(static DRIVER: TimerDriver = TimerDriver{
alarms: Mutex::new(DUMMY_ALARM),
allocated: AtomicBool::new(false),
});
#[inline(always)]
pub fn check_alarm(curr_tick: super::TickType) {
DRIVER.check_alarm(curr_tick);
}
impl TimerDriver {
/// Internal function to check and trigger alarms.
///
/// This function enters a critical section to safely access shared resources and checks if there is an alarm
/// set to go off at the current tick. If an alarm is due, it resets the alarm timestamp and invokes the callback.
fn check_alarm(&self, curr_tick: super::TickType) {
critical_section::with(|cs| {
let allocated = self.allocated.load(Ordering::Relaxed);
if !allocated {
return;
}
let alarm = &self.alarms.borrow(cs);
let timestamp = alarm.timestamp.get();
if timestamp <= curr_tick {
alarm.timestamp.set(super::TickType::MAX);
if let Some((f, ctx)) = alarm.callback.get() {
f(ctx);
}
}
});
}
}
impl Driver for TimerDriver {
fn now(&self) -> u64 {
super::Tick::now().0 as u64
}
/// Allocates an alarm resource.
///
/// This function checks if an alarm is already allocated. If not, it allocates one and returns an `AlarmHandle`.
/// Note: This function is marked as unsafe because it may lead to undefined behavior if called incorrectly.
unsafe fn allocate_alarm(&self) -> Option<AlarmHandle> {
let allocated = self.allocated.load(Ordering::Relaxed);
if allocated {
return None;
}
self.allocated.store(true, Ordering::Relaxed);
Some(AlarmHandle::new(0))
}
/// Sets the callback for an alarm.
///
/// This function sets the callback function and context for a given alarm handle.
fn set_alarm_callback(&self, _alarm: AlarmHandle, callback: fn(*mut ()), ctx: *mut ()) {
critical_section::with(|cs| {
let alarm = &self.alarms.borrow(cs);
alarm.callback.set(Some((callback, ctx)));
})
}
/// Sets an alarm to trigger at a specific timestamp.
///
/// This function sets the alarm to trigger at the provided timestamp. It returns `true` if the alarm was set,
/// and `false` if the timestamp is in the past.
fn set_alarm(&self, _alarm: AlarmHandle, timestamp: u64) -> bool {
critical_section::with(|cs| {
let alarm = &self.alarms.borrow(cs);
let now = self.now();
if timestamp <= now {
alarm.timestamp.set(super::TickType::MAX);
false
} else {
alarm.timestamp.set(timestamp as super::TickType);
true
}
})
}
}
}