1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
//! Quad Serial Peripheral Interface (QSPI) flash driver.

#![macro_use]

use core::future::poll_fn;
use core::marker::PhantomData;
use core::ptr;
use core::task::Poll;

use embassy_hal_internal::drop::OnDrop;
use embassy_hal_internal::{into_ref, PeripheralRef};
use embedded_storage::nor_flash::{ErrorType, NorFlash, NorFlashError, NorFlashErrorKind, ReadNorFlash};

use crate::gpio::{self, Pin as GpioPin};
use crate::interrupt::typelevel::Interrupt;
pub use crate::pac::qspi::ifconfig0::{
    ADDRMODE_A as AddressMode, PPSIZE_A as WritePageSize, READOC_A as ReadOpcode, WRITEOC_A as WriteOpcode,
};
pub use crate::pac::qspi::ifconfig1::SPIMODE_A as SpiMode;
use crate::{interrupt, Peripheral};

/// Deep power-down config.
pub struct DeepPowerDownConfig {
    /// Time required for entering DPM, in units of 16us
    pub enter_time: u16,
    /// Time required for exiting DPM, in units of 16us
    pub exit_time: u16,
}

/// QSPI bus frequency.
pub enum Frequency {
    /// 32 Mhz
    M32 = 0,
    /// 16 Mhz
    M16 = 1,
    /// 10.7 Mhz
    M10_7 = 2,
    /// 8 Mhz
    M8 = 3,
    /// 6.4 Mhz
    M6_4 = 4,
    /// 5.3 Mhz
    M5_3 = 5,
    /// 4.6 Mhz
    M4_6 = 6,
    /// 4 Mhz
    M4 = 7,
    /// 3.6 Mhz
    M3_6 = 8,
    /// 3.2 Mhz
    M3_2 = 9,
    /// 2.9 Mhz
    M2_9 = 10,
    /// 2.7 Mhz
    M2_7 = 11,
    /// 2.5 Mhz
    M2_5 = 12,
    /// 2.3 Mhz
    M2_3 = 13,
    /// 2.1 Mhz
    M2_1 = 14,
    /// 2 Mhz
    M2 = 15,
}

/// QSPI config.
#[non_exhaustive]
pub struct Config {
    /// XIP offset.
    pub xip_offset: u32,
    /// Opcode used for read operations.
    pub read_opcode: ReadOpcode,
    /// Opcode used for write operations.
    pub write_opcode: WriteOpcode,
    /// Page size for write operations.
    pub write_page_size: WritePageSize,
    /// Configuration for deep power down. If None, deep power down is disabled.
    pub deep_power_down: Option<DeepPowerDownConfig>,
    /// QSPI bus frequency.
    pub frequency: Frequency,
    /// Value is specified in number of 16 MHz periods (62.5 ns)
    pub sck_delay: u8,
    /// Value is specified in number of 64 MHz periods (15.625 ns), valid values between 0 and 7 (inclusive)
    pub rx_delay: u8,
    /// Whether data is captured on the clock rising edge and data is output on a falling edge (MODE0) or vice-versa (MODE3)
    pub spi_mode: SpiMode,
    /// Addressing mode (24-bit or 32-bit)
    pub address_mode: AddressMode,
    /// Flash memory capacity in bytes. This is the value reported by the `embedded-storage` traits.
    pub capacity: u32,
}

impl Default for Config {
    fn default() -> Self {
        Self {
            read_opcode: ReadOpcode::READ4IO,
            write_opcode: WriteOpcode::PP4IO,
            xip_offset: 0,
            write_page_size: WritePageSize::_256BYTES,
            deep_power_down: None,
            frequency: Frequency::M8,
            sck_delay: 80,
            rx_delay: 2,
            spi_mode: SpiMode::MODE0,
            address_mode: AddressMode::_24BIT,
            capacity: 0,
        }
    }
}

/// Error
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum Error {
    /// Operation address was out of bounds.
    OutOfBounds,
    // TODO add "not in data memory" error and check for it
}

/// Interrupt handler.
pub struct InterruptHandler<T: Instance> {
    _phantom: PhantomData<T>,
}

impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
    unsafe fn on_interrupt() {
        let r = T::regs();
        let s = T::state();

        if r.events_ready.read().bits() != 0 {
            s.waker.wake();
            r.intenclr.write(|w| w.ready().clear());
        }
    }
}

/// QSPI flash driver.
pub struct Qspi<'d, T: Instance> {
    _peri: PeripheralRef<'d, T>,
    dpm_enabled: bool,
    capacity: u32,
}

impl<'d, T: Instance> Qspi<'d, T> {
    /// Create a new QSPI driver.
    pub fn new(
        qspi: impl Peripheral<P = T> + 'd,
        _irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
        sck: impl Peripheral<P = impl GpioPin> + 'd,
        csn: impl Peripheral<P = impl GpioPin> + 'd,
        io0: impl Peripheral<P = impl GpioPin> + 'd,
        io1: impl Peripheral<P = impl GpioPin> + 'd,
        io2: impl Peripheral<P = impl GpioPin> + 'd,
        io3: impl Peripheral<P = impl GpioPin> + 'd,
        config: Config,
    ) -> Self {
        into_ref!(qspi, sck, csn, io0, io1, io2, io3);

        let r = T::regs();

        macro_rules! config_pin {
            ($pin:ident) => {
                $pin.set_high();
                $pin.conf().write(|w| {
                    w.dir().output();
                    w.drive().h0h1();
                    #[cfg(feature = "_nrf5340-s")]
                    w.mcusel().peripheral();
                    w
                });
                r.psel.$pin.write(|w| unsafe { w.bits($pin.psel_bits()) });
            };
        }

        config_pin!(sck);
        config_pin!(csn);
        config_pin!(io0);
        config_pin!(io1);
        config_pin!(io2);
        config_pin!(io3);

        r.ifconfig0.write(|w| {
            w.addrmode().variant(config.address_mode);
            w.dpmenable().bit(config.deep_power_down.is_some());
            w.ppsize().variant(config.write_page_size);
            w.readoc().variant(config.read_opcode);
            w.writeoc().variant(config.write_opcode);
            w
        });

        if let Some(dpd) = &config.deep_power_down {
            r.dpmdur.write(|w| unsafe {
                w.enter().bits(dpd.enter_time);
                w.exit().bits(dpd.exit_time);
                w
            })
        }

        r.ifconfig1.write(|w| unsafe {
            w.sckdelay().bits(config.sck_delay);
            w.dpmen().exit();
            w.spimode().variant(config.spi_mode);
            w.sckfreq().bits(config.frequency as u8);
            w
        });

        r.iftiming.write(|w| unsafe {
            w.rxdelay().bits(config.rx_delay & 0b111);
            w
        });

        r.xipoffset.write(|w| unsafe {
            w.xipoffset().bits(config.xip_offset);
            w
        });

        T::Interrupt::unpend();
        unsafe { T::Interrupt::enable() };

        // Enable it
        r.enable.write(|w| w.enable().enabled());

        let res = Self {
            _peri: qspi,
            dpm_enabled: config.deep_power_down.is_some(),
            capacity: config.capacity,
        };

        r.events_ready.reset();
        r.intenset.write(|w| w.ready().set());

        r.tasks_activate.write(|w| w.tasks_activate().bit(true));

        Self::blocking_wait_ready();

        res
    }

    /// Do a custom QSPI instruction.
    pub async fn custom_instruction(&mut self, opcode: u8, req: &[u8], resp: &mut [u8]) -> Result<(), Error> {
        let ondrop = OnDrop::new(Self::blocking_wait_ready);

        let len = core::cmp::max(req.len(), resp.len()) as u8;
        self.custom_instruction_start(opcode, req, len)?;

        self.wait_ready().await;

        self.custom_instruction_finish(resp)?;

        ondrop.defuse();

        Ok(())
    }

    /// Do a custom QSPI instruction, blocking version.
    pub fn blocking_custom_instruction(&mut self, opcode: u8, req: &[u8], resp: &mut [u8]) -> Result<(), Error> {
        let len = core::cmp::max(req.len(), resp.len()) as u8;
        self.custom_instruction_start(opcode, req, len)?;

        Self::blocking_wait_ready();

        self.custom_instruction_finish(resp)?;

        Ok(())
    }

    fn custom_instruction_start(&mut self, opcode: u8, req: &[u8], len: u8) -> Result<(), Error> {
        assert!(req.len() <= 8);

        let mut dat0: u32 = 0;
        let mut dat1: u32 = 0;

        for i in 0..4 {
            if i < req.len() {
                dat0 |= (req[i] as u32) << (i * 8);
            }
        }
        for i in 0..4 {
            if i + 4 < req.len() {
                dat1 |= (req[i + 4] as u32) << (i * 8);
            }
        }

        let r = T::regs();
        r.cinstrdat0.write(|w| unsafe { w.bits(dat0) });
        r.cinstrdat1.write(|w| unsafe { w.bits(dat1) });

        r.events_ready.reset();
        r.intenset.write(|w| w.ready().set());

        r.cinstrconf.write(|w| {
            let w = unsafe { w.opcode().bits(opcode) };
            let w = unsafe { w.length().bits(len + 1) };
            let w = w.lio2().bit(true);
            let w = w.lio3().bit(true);
            let w = w.wipwait().bit(true);
            let w = w.wren().bit(true);
            let w = w.lfen().bit(false);
            let w = w.lfstop().bit(false);
            w
        });
        Ok(())
    }

    fn custom_instruction_finish(&mut self, resp: &mut [u8]) -> Result<(), Error> {
        let r = T::regs();

        let dat0 = r.cinstrdat0.read().bits();
        let dat1 = r.cinstrdat1.read().bits();
        for i in 0..4 {
            if i < resp.len() {
                resp[i] = (dat0 >> (i * 8)) as u8;
            }
        }
        for i in 0..4 {
            if i + 4 < resp.len() {
                resp[i] = (dat1 >> (i * 8)) as u8;
            }
        }
        Ok(())
    }

    async fn wait_ready(&mut self) {
        poll_fn(move |cx| {
            let r = T::regs();
            let s = T::state();
            s.waker.register(cx.waker());
            if r.events_ready.read().bits() != 0 {
                return Poll::Ready(());
            }
            Poll::Pending
        })
        .await
    }

    fn blocking_wait_ready() {
        loop {
            let r = T::regs();
            if r.events_ready.read().bits() != 0 {
                break;
            }
        }
    }

    fn start_read(&mut self, address: u32, data: &mut [u8]) -> Result<(), Error> {
        // TODO: Return these as errors instead.
        assert_eq!(data.as_ptr() as u32 % 4, 0);
        assert_eq!(data.len() as u32 % 4, 0);
        assert_eq!(address % 4, 0);

        let r = T::regs();

        r.read.src.write(|w| unsafe { w.src().bits(address) });
        r.read.dst.write(|w| unsafe { w.dst().bits(data.as_ptr() as u32) });
        r.read.cnt.write(|w| unsafe { w.cnt().bits(data.len() as u32) });

        r.events_ready.reset();
        r.intenset.write(|w| w.ready().set());
        r.tasks_readstart.write(|w| w.tasks_readstart().bit(true));

        Ok(())
    }

    fn start_write(&mut self, address: u32, data: &[u8]) -> Result<(), Error> {
        // TODO: Return these as errors instead.
        assert_eq!(data.as_ptr() as u32 % 4, 0);
        assert_eq!(data.len() as u32 % 4, 0);
        assert_eq!(address % 4, 0);

        let r = T::regs();
        r.write.src.write(|w| unsafe { w.src().bits(data.as_ptr() as u32) });
        r.write.dst.write(|w| unsafe { w.dst().bits(address) });
        r.write.cnt.write(|w| unsafe { w.cnt().bits(data.len() as u32) });

        r.events_ready.reset();
        r.intenset.write(|w| w.ready().set());
        r.tasks_writestart.write(|w| w.tasks_writestart().bit(true));

        Ok(())
    }

    fn start_erase(&mut self, address: u32) -> Result<(), Error> {
        // TODO: Return these as errors instead.
        assert_eq!(address % 4096, 0);

        let r = T::regs();
        r.erase.ptr.write(|w| unsafe { w.ptr().bits(address) });
        r.erase.len.write(|w| w.len()._4kb());

        r.events_ready.reset();
        r.intenset.write(|w| w.ready().set());
        r.tasks_erasestart.write(|w| w.tasks_erasestart().bit(true));

        Ok(())
    }

    /// Raw QSPI read.
    ///
    /// The difference with `read` is that this does not do bounds checks
    /// against the flash capacity. It is intended for use when QSPI is used as
    /// a raw bus, not with flash memory.
    pub async fn read_raw(&mut self, address: u32, data: &mut [u8]) -> Result<(), Error> {
        // Avoid blocking_wait_ready() blocking forever on zero-length buffers.
        if data.len() == 0 {
            return Ok(());
        }

        let ondrop = OnDrop::new(Self::blocking_wait_ready);

        self.start_read(address, data)?;
        self.wait_ready().await;

        ondrop.defuse();

        Ok(())
    }

    /// Raw QSPI write.
    ///
    /// The difference with `write` is that this does not do bounds checks
    /// against the flash capacity. It is intended for use when QSPI is used as
    /// a raw bus, not with flash memory.
    pub async fn write_raw(&mut self, address: u32, data: &[u8]) -> Result<(), Error> {
        // Avoid blocking_wait_ready() blocking forever on zero-length buffers.
        if data.len() == 0 {
            return Ok(());
        }

        let ondrop = OnDrop::new(Self::blocking_wait_ready);

        self.start_write(address, data)?;
        self.wait_ready().await;

        ondrop.defuse();

        Ok(())
    }

    /// Raw QSPI read, blocking version.
    ///
    /// The difference with `blocking_read` is that this does not do bounds checks
    /// against the flash capacity. It is intended for use when QSPI is used as
    /// a raw bus, not with flash memory.
    pub fn blocking_read_raw(&mut self, address: u32, data: &mut [u8]) -> Result<(), Error> {
        // Avoid blocking_wait_ready() blocking forever on zero-length buffers.
        if data.len() == 0 {
            return Ok(());
        }

        self.start_read(address, data)?;
        Self::blocking_wait_ready();
        Ok(())
    }

    /// Raw QSPI write, blocking version.
    ///
    /// The difference with `blocking_write` is that this does not do bounds checks
    /// against the flash capacity. It is intended for use when QSPI is used as
    /// a raw bus, not with flash memory.
    pub fn blocking_write_raw(&mut self, address: u32, data: &[u8]) -> Result<(), Error> {
        // Avoid blocking_wait_ready() blocking forever on zero-length buffers.
        if data.len() == 0 {
            return Ok(());
        }

        self.start_write(address, data)?;
        Self::blocking_wait_ready();
        Ok(())
    }

    /// Read data from the flash memory.
    pub async fn read(&mut self, address: u32, data: &mut [u8]) -> Result<(), Error> {
        self.bounds_check(address, data.len())?;
        self.read_raw(address, data).await
    }

    /// Write data to the flash memory.
    pub async fn write(&mut self, address: u32, data: &[u8]) -> Result<(), Error> {
        self.bounds_check(address, data.len())?;
        self.write_raw(address, data).await
    }

    /// Erase a sector on the flash memory.
    pub async fn erase(&mut self, address: u32) -> Result<(), Error> {
        if address >= self.capacity {
            return Err(Error::OutOfBounds);
        }

        let ondrop = OnDrop::new(Self::blocking_wait_ready);

        self.start_erase(address)?;
        self.wait_ready().await;

        ondrop.defuse();

        Ok(())
    }

    /// Read data from the flash memory, blocking version.
    pub fn blocking_read(&mut self, address: u32, data: &mut [u8]) -> Result<(), Error> {
        self.bounds_check(address, data.len())?;
        self.blocking_read_raw(address, data)
    }

    /// Write data to the flash memory, blocking version.
    pub fn blocking_write(&mut self, address: u32, data: &[u8]) -> Result<(), Error> {
        self.bounds_check(address, data.len())?;
        self.blocking_write_raw(address, data)
    }

    /// Erase a sector on the flash memory, blocking version.
    pub fn blocking_erase(&mut self, address: u32) -> Result<(), Error> {
        if address >= self.capacity {
            return Err(Error::OutOfBounds);
        }

        self.start_erase(address)?;
        Self::blocking_wait_ready();
        Ok(())
    }

    fn bounds_check(&self, address: u32, len: usize) -> Result<(), Error> {
        let len_u32: u32 = len.try_into().map_err(|_| Error::OutOfBounds)?;
        let end_address = address.checked_add(len_u32).ok_or(Error::OutOfBounds)?;
        if end_address > self.capacity {
            return Err(Error::OutOfBounds);
        }
        Ok(())
    }
}

impl<'d, T: Instance> Drop for Qspi<'d, T> {
    fn drop(&mut self) {
        let r = T::regs();

        if self.dpm_enabled {
            trace!("qspi: doing deep powerdown...");

            r.ifconfig1.modify(|_, w| w.dpmen().enter());

            // Wait for DPM enter.
            // Unfortunately we must spin. There's no way to do this interrupt-driven.
            // The READY event does NOT fire on DPM enter (but it does fire on DPM exit :shrug:)
            while r.status.read().dpm().is_disabled() {}

            // Wait MORE for DPM enter.
            // I have absolutely no idea why, but the wait above is not enough :'(
            // Tested with mx25r64 in nrf52840-dk, and with mx25r16 in custom board
            cortex_m::asm::delay(4096);
        }

        // it seems events_ready is not generated in response to deactivate. nrfx doesn't wait for it.
        r.tasks_deactivate.write(|w| w.tasks_deactivate().set_bit());

        // Workaround https://infocenter.nordicsemi.com/topic/errata_nRF52840_Rev1/ERR/nRF52840/Rev1/latest/anomaly_840_122.html?cp=4_0_1_2_1_7
        // Note that the doc has 2 register writes, but the first one is really the write to tasks_deactivate,
        // so we only do the second one here.
        unsafe { ptr::write_volatile(0x40029054 as *mut u32, 1) }

        r.enable.write(|w| w.enable().disabled());

        // Note: we do NOT deconfigure CSN here. If DPM is in use and we disconnect CSN,
        // leaving it floating, the flash chip might read it as zero which would cause it to
        // spuriously exit DPM.
        gpio::deconfigure_pin(r.psel.sck.read().bits());
        gpio::deconfigure_pin(r.psel.io0.read().bits());
        gpio::deconfigure_pin(r.psel.io1.read().bits());
        gpio::deconfigure_pin(r.psel.io2.read().bits());
        gpio::deconfigure_pin(r.psel.io3.read().bits());

        trace!("qspi: dropped");
    }
}

impl<'d, T: Instance> ErrorType for Qspi<'d, T> {
    type Error = Error;
}

impl NorFlashError for Error {
    fn kind(&self) -> NorFlashErrorKind {
        NorFlashErrorKind::Other
    }
}

impl<'d, T: Instance> ReadNorFlash for Qspi<'d, T> {
    const READ_SIZE: usize = 4;

    fn read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Self::Error> {
        self.blocking_read(offset, bytes)?;
        Ok(())
    }

    fn capacity(&self) -> usize {
        self.capacity as usize
    }
}

impl<'d, T: Instance> NorFlash for Qspi<'d, T> {
    const WRITE_SIZE: usize = 4;
    const ERASE_SIZE: usize = 4096;

    fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
        for address in (from..to).step_by(<Self as NorFlash>::ERASE_SIZE) {
            self.blocking_erase(address)?;
        }
        Ok(())
    }

    fn write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Self::Error> {
        self.blocking_write(offset, bytes)?;
        Ok(())
    }
}

#[cfg(feature = "qspi-multiwrite-flash")]
impl<'d, T: Instance> embedded_storage::nor_flash::MultiwriteNorFlash for Qspi<'d, T> {}

mod _eh1 {
    use embedded_storage_async::nor_flash::{NorFlash as AsyncNorFlash, ReadNorFlash as AsyncReadNorFlash};

    use super::*;

    impl<'d, T: Instance> AsyncNorFlash for Qspi<'d, T> {
        const WRITE_SIZE: usize = <Self as NorFlash>::WRITE_SIZE;
        const ERASE_SIZE: usize = <Self as NorFlash>::ERASE_SIZE;

        async fn write(&mut self, offset: u32, data: &[u8]) -> Result<(), Self::Error> {
            self.write(offset, data).await
        }

        async fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
            for address in (from..to).step_by(<Self as AsyncNorFlash>::ERASE_SIZE) {
                self.erase(address).await?
            }
            Ok(())
        }
    }

    impl<'d, T: Instance> AsyncReadNorFlash for Qspi<'d, T> {
        const READ_SIZE: usize = 4;
        async fn read(&mut self, address: u32, data: &mut [u8]) -> Result<(), Self::Error> {
            self.read(address, data).await
        }

        fn capacity(&self) -> usize {
            self.capacity as usize
        }
    }

    #[cfg(feature = "qspi-multiwrite-flash")]
    impl<'d, T: Instance> embedded_storage_async::nor_flash::MultiwriteNorFlash for Qspi<'d, T> {}
}

pub(crate) mod sealed {
    use embassy_sync::waitqueue::AtomicWaker;

    /// Peripheral static state
    pub struct State {
        pub waker: AtomicWaker,
    }

    impl State {
        pub const fn new() -> Self {
            Self {
                waker: AtomicWaker::new(),
            }
        }
    }

    pub trait Instance {
        fn regs() -> &'static crate::pac::qspi::RegisterBlock;
        fn state() -> &'static State;
    }
}

/// QSPI peripheral instance.
pub trait Instance: Peripheral<P = Self> + sealed::Instance + 'static + Send {
    /// Interrupt for this peripheral.
    type Interrupt: interrupt::typelevel::Interrupt;
}

macro_rules! impl_qspi {
    ($type:ident, $pac_type:ident, $irq:ident) => {
        impl crate::qspi::sealed::Instance for peripherals::$type {
            fn regs() -> &'static crate::pac::qspi::RegisterBlock {
                unsafe { &*pac::$pac_type::ptr() }
            }
            fn state() -> &'static crate::qspi::sealed::State {
                static STATE: crate::qspi::sealed::State = crate::qspi::sealed::State::new();
                &STATE
            }
        }
        impl crate::qspi::Instance for peripherals::$type {
            type Interrupt = crate::interrupt::typelevel::$irq;
        }
    };
}