1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
//! TCP sockets.
//!
//! # Listening
//!
//! `embassy-net` does not have a `TcpListener`. Instead, individual `TcpSocket`s can be put into
//! listening mode by calling [`TcpSocket::accept`].
//!
//! Incoming connections when no socket is listening are rejected. To accept many incoming
//! connections, create many sockets and put them all into listening mode.
use core::cell::RefCell;
use core::future::poll_fn;
use core::mem;
use core::task::Poll;
use embassy_net_driver::Driver;
use embassy_time::Duration;
use smoltcp::iface::{Interface, SocketHandle};
use smoltcp::socket::tcp;
pub use smoltcp::socket::tcp::State;
use smoltcp::wire::{IpEndpoint, IpListenEndpoint};
use crate::time::duration_to_smoltcp;
use crate::{SocketStack, Stack};
/// Error returned by TcpSocket read/write functions.
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
/// The connection was reset.
///
/// This can happen on receiving a RST packet, or on timeout.
ConnectionReset,
}
/// Error returned by [`TcpSocket::connect`].
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum ConnectError {
/// The socket is already connected or listening.
InvalidState,
/// The remote host rejected the connection with a RST packet.
ConnectionReset,
/// Connect timed out.
TimedOut,
/// No route to host.
NoRoute,
}
/// Error returned by [`TcpSocket::accept`].
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum AcceptError {
/// The socket is already connected or listening.
InvalidState,
/// Invalid listen port
InvalidPort,
/// The remote host rejected the connection with a RST packet.
ConnectionReset,
}
/// A TCP socket.
pub struct TcpSocket<'a> {
io: TcpIo<'a>,
}
/// The reader half of a TCP socket.
pub struct TcpReader<'a> {
io: TcpIo<'a>,
}
/// The writer half of a TCP socket.
pub struct TcpWriter<'a> {
io: TcpIo<'a>,
}
impl<'a> TcpReader<'a> {
/// Read data from the socket.
///
/// Returns how many bytes were read, or an error. If no data is available, it waits
/// until there is at least one byte available.
pub async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Error> {
self.io.read(buf).await
}
/// Call `f` with the largest contiguous slice of octets in the receive buffer,
/// and dequeue the amount of elements returned by `f`.
///
/// If no data is available, it waits until there is at least one byte available.
pub async fn read_with<F, R>(&mut self, f: F) -> Result<R, Error>
where
F: FnOnce(&mut [u8]) -> (usize, R),
{
self.io.read_with(f).await
}
/// Return the maximum number of bytes inside the transmit buffer.
pub fn recv_capacity(&self) -> usize {
self.io.recv_capacity()
}
}
impl<'a> TcpWriter<'a> {
/// Write data to the socket.
///
/// Returns how many bytes were written, or an error. If the socket is not ready to
/// accept data, it waits until it is.
pub async fn write(&mut self, buf: &[u8]) -> Result<usize, Error> {
self.io.write(buf).await
}
/// Flushes the written data to the socket.
///
/// This waits until all data has been sent, and ACKed by the remote host. For a connection
/// closed with [`abort()`](TcpSocket::abort) it will wait for the TCP RST packet to be sent.
pub async fn flush(&mut self) -> Result<(), Error> {
self.io.flush().await
}
/// Call `f` with the largest contiguous slice of octets in the transmit buffer,
/// and enqueue the amount of elements returned by `f`.
///
/// If the socket is not ready to accept data, it waits until it is.
pub async fn write_with<F, R>(&mut self, f: F) -> Result<R, Error>
where
F: FnOnce(&mut [u8]) -> (usize, R),
{
self.io.write_with(f).await
}
/// Return the maximum number of bytes inside the transmit buffer.
pub fn send_capacity(&self) -> usize {
self.io.send_capacity()
}
}
impl<'a> TcpSocket<'a> {
/// Create a new TCP socket on the given stack, with the given buffers.
pub fn new<D: Driver>(stack: &'a Stack<D>, rx_buffer: &'a mut [u8], tx_buffer: &'a mut [u8]) -> Self {
let s = &mut *stack.socket.borrow_mut();
let rx_buffer: &'static mut [u8] = unsafe { mem::transmute(rx_buffer) };
let tx_buffer: &'static mut [u8] = unsafe { mem::transmute(tx_buffer) };
let handle = s.sockets.add(tcp::Socket::new(
tcp::SocketBuffer::new(rx_buffer),
tcp::SocketBuffer::new(tx_buffer),
));
Self {
io: TcpIo {
stack: &stack.socket,
handle,
},
}
}
/// Return the maximum number of bytes inside the recv buffer.
pub fn recv_capacity(&self) -> usize {
self.io.recv_capacity()
}
/// Return the maximum number of bytes inside the transmit buffer.
pub fn send_capacity(&self) -> usize {
self.io.send_capacity()
}
/// Call `f` with the largest contiguous slice of octets in the transmit buffer,
/// and enqueue the amount of elements returned by `f`.
///
/// If the socket is not ready to accept data, it waits until it is.
pub async fn write_with<F, R>(&mut self, f: F) -> Result<R, Error>
where
F: FnOnce(&mut [u8]) -> (usize, R),
{
self.io.write_with(f).await
}
/// Call `f` with the largest contiguous slice of octets in the receive buffer,
/// and dequeue the amount of elements returned by `f`.
///
/// If no data is available, it waits until there is at least one byte available.
pub async fn read_with<F, R>(&mut self, f: F) -> Result<R, Error>
where
F: FnOnce(&mut [u8]) -> (usize, R),
{
self.io.read_with(f).await
}
/// Split the socket into reader and a writer halves.
pub fn split(&mut self) -> (TcpReader<'_>, TcpWriter<'_>) {
(TcpReader { io: self.io }, TcpWriter { io: self.io })
}
/// Connect to a remote host.
pub async fn connect<T>(&mut self, remote_endpoint: T) -> Result<(), ConnectError>
where
T: Into<IpEndpoint>,
{
let local_port = self.io.stack.borrow_mut().get_local_port();
match {
self.io
.with_mut(|s, i| s.connect(i.context(), remote_endpoint, local_port))
} {
Ok(()) => {}
Err(tcp::ConnectError::InvalidState) => return Err(ConnectError::InvalidState),
Err(tcp::ConnectError::Unaddressable) => return Err(ConnectError::NoRoute),
}
poll_fn(|cx| {
self.io.with_mut(|s, _| match s.state() {
tcp::State::Closed | tcp::State::TimeWait => Poll::Ready(Err(ConnectError::ConnectionReset)),
tcp::State::Listen => unreachable!(),
tcp::State::SynSent | tcp::State::SynReceived => {
s.register_send_waker(cx.waker());
Poll::Pending
}
_ => Poll::Ready(Ok(())),
})
})
.await
}
/// Accept a connection from a remote host.
///
/// This function puts the socket in listening mode, and waits until a connection is received.
pub async fn accept<T>(&mut self, local_endpoint: T) -> Result<(), AcceptError>
where
T: Into<IpListenEndpoint>,
{
match self.io.with_mut(|s, _| s.listen(local_endpoint)) {
Ok(()) => {}
Err(tcp::ListenError::InvalidState) => return Err(AcceptError::InvalidState),
Err(tcp::ListenError::Unaddressable) => return Err(AcceptError::InvalidPort),
}
poll_fn(|cx| {
self.io.with_mut(|s, _| match s.state() {
tcp::State::Listen | tcp::State::SynSent | tcp::State::SynReceived => {
s.register_send_waker(cx.waker());
Poll::Pending
}
_ => Poll::Ready(Ok(())),
})
})
.await
}
/// Read data from the socket.
///
/// Returns how many bytes were read, or an error. If no data is available, it waits
/// until there is at least one byte available.
pub async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Error> {
self.io.read(buf).await
}
/// Write data to the socket.
///
/// Returns how many bytes were written, or an error. If the socket is not ready to
/// accept data, it waits until it is.
pub async fn write(&mut self, buf: &[u8]) -> Result<usize, Error> {
self.io.write(buf).await
}
/// Flushes the written data to the socket.
///
/// This waits until all data has been sent, and ACKed by the remote host. For a connection
/// closed with [`abort()`](TcpSocket::abort) it will wait for the TCP RST packet to be sent.
pub async fn flush(&mut self) -> Result<(), Error> {
self.io.flush().await
}
/// Set the timeout for the socket.
///
/// If the timeout is set, the socket will be closed if no data is received for the
/// specified duration.
pub fn set_timeout(&mut self, duration: Option<Duration>) {
self.io
.with_mut(|s, _| s.set_timeout(duration.map(duration_to_smoltcp)))
}
/// Set the keep-alive interval for the socket.
///
/// If the keep-alive interval is set, the socket will send keep-alive packets after
/// the specified duration of inactivity.
///
/// If not set, the socket will not send keep-alive packets.
pub fn set_keep_alive(&mut self, interval: Option<Duration>) {
self.io
.with_mut(|s, _| s.set_keep_alive(interval.map(duration_to_smoltcp)))
}
/// Set the hop limit field in the IP header of sent packets.
pub fn set_hop_limit(&mut self, hop_limit: Option<u8>) {
self.io.with_mut(|s, _| s.set_hop_limit(hop_limit))
}
/// Get the local endpoint of the socket.
///
/// Returns `None` if the socket is not bound (listening) or not connected.
pub fn local_endpoint(&self) -> Option<IpEndpoint> {
self.io.with(|s, _| s.local_endpoint())
}
/// Get the remote endpoint of the socket.
///
/// Returns `None` if the socket is not connected.
pub fn remote_endpoint(&self) -> Option<IpEndpoint> {
self.io.with(|s, _| s.remote_endpoint())
}
/// Get the state of the socket.
pub fn state(&self) -> State {
self.io.with(|s, _| s.state())
}
/// Close the write half of the socket.
///
/// This closes only the write half of the socket. The read half side remains open, the
/// socket can still receive data.
///
/// Data that has been written to the socket and not yet sent (or not yet ACKed) will still
/// still sent. The last segment of the pending to send data is sent with the FIN flag set.
pub fn close(&mut self) {
self.io.with_mut(|s, _| s.close())
}
/// Forcibly close the socket.
///
/// This instantly closes both the read and write halves of the socket. Any pending data
/// that has not been sent will be lost.
///
/// Note that the TCP RST packet is not sent immediately - if the `TcpSocket` is dropped too soon
/// the remote host may not know the connection has been closed.
/// `abort()` callers should wait for a [`flush()`](TcpSocket::flush) call to complete before
/// dropping or reusing the socket.
pub fn abort(&mut self) {
self.io.with_mut(|s, _| s.abort())
}
/// Get whether the socket is ready to send data, i.e. whether there is space in the send buffer.
pub fn may_send(&self) -> bool {
self.io.with(|s, _| s.may_send())
}
/// return whether the recieve half of the full-duplex connection is open.
/// This function returns true if it’s possible to receive data from the remote endpoint.
/// It will return true while there is data in the receive buffer, and if there isn’t,
/// as long as the remote endpoint has not closed the connection.
pub fn may_recv(&self) -> bool {
self.io.with(|s, _| s.may_recv())
}
/// Get whether the socket is ready to receive data, i.e. whether there is some pending data in the receive buffer.
pub fn can_recv(&self) -> bool {
self.io.with(|s, _| s.can_recv())
}
}
impl<'a> Drop for TcpSocket<'a> {
fn drop(&mut self) {
self.io.stack.borrow_mut().sockets.remove(self.io.handle);
}
}
// =======================
#[derive(Copy, Clone)]
struct TcpIo<'a> {
stack: &'a RefCell<SocketStack>,
handle: SocketHandle,
}
impl<'d> TcpIo<'d> {
fn with<R>(&self, f: impl FnOnce(&tcp::Socket, &Interface) -> R) -> R {
let s = &*self.stack.borrow();
let socket = s.sockets.get::<tcp::Socket>(self.handle);
f(socket, &s.iface)
}
fn with_mut<R>(&mut self, f: impl FnOnce(&mut tcp::Socket, &mut Interface) -> R) -> R {
let s = &mut *self.stack.borrow_mut();
let socket = s.sockets.get_mut::<tcp::Socket>(self.handle);
let res = f(socket, &mut s.iface);
s.waker.wake();
res
}
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Error> {
poll_fn(move |cx| {
// CAUTION: smoltcp semantics around EOF are different to what you'd expect
// from posix-like IO, so we have to tweak things here.
self.with_mut(|s, _| match s.recv_slice(buf) {
// Reading into empty buffer
Ok(0) if buf.is_empty() => {
// embedded_io_async::Read's contract is to not block if buf is empty. While
// this function is not a direct implementor of the trait method, we still don't
// want our future to never resolve.
Poll::Ready(Ok(0))
}
// No data ready
Ok(0) => {
s.register_recv_waker(cx.waker());
Poll::Pending
}
// Data ready!
Ok(n) => Poll::Ready(Ok(n)),
// EOF
Err(tcp::RecvError::Finished) => Poll::Ready(Ok(0)),
// Connection reset. TODO: this can also be timeouts etc, investigate.
Err(tcp::RecvError::InvalidState) => Poll::Ready(Err(Error::ConnectionReset)),
})
})
.await
}
async fn write(&mut self, buf: &[u8]) -> Result<usize, Error> {
poll_fn(move |cx| {
self.with_mut(|s, _| match s.send_slice(buf) {
// Not ready to send (no space in the tx buffer)
Ok(0) => {
s.register_send_waker(cx.waker());
Poll::Pending
}
// Some data sent
Ok(n) => Poll::Ready(Ok(n)),
// Connection reset. TODO: this can also be timeouts etc, investigate.
Err(tcp::SendError::InvalidState) => Poll::Ready(Err(Error::ConnectionReset)),
})
})
.await
}
async fn write_with<F, R>(&mut self, f: F) -> Result<R, Error>
where
F: FnOnce(&mut [u8]) -> (usize, R),
{
let mut f = Some(f);
poll_fn(move |cx| {
self.with_mut(|s, _| {
if !s.can_send() {
if s.may_send() {
// socket buffer is full wait until it has atleast one byte free
s.register_send_waker(cx.waker());
Poll::Pending
} else {
// if we can't transmit because the transmit half of the duplex connection is closed then return an error
Poll::Ready(Err(Error::ConnectionReset))
}
} else {
Poll::Ready(match s.send(unwrap!(f.take())) {
// Connection reset. TODO: this can also be timeouts etc, investigate.
Err(tcp::SendError::InvalidState) => Err(Error::ConnectionReset),
Ok(r) => Ok(r),
})
}
})
})
.await
}
async fn read_with<F, R>(&mut self, f: F) -> Result<R, Error>
where
F: FnOnce(&mut [u8]) -> (usize, R),
{
let mut f = Some(f);
poll_fn(move |cx| {
self.with_mut(|s, _| {
if !s.can_recv() {
if s.may_recv() {
// socket buffer is empty wait until it has atleast one byte has arrived
s.register_recv_waker(cx.waker());
Poll::Pending
} else {
// if we can't receive because the recieve half of the duplex connection is closed then return an error
Poll::Ready(Err(Error::ConnectionReset))
}
} else {
Poll::Ready(match s.recv(unwrap!(f.take())) {
// Connection reset. TODO: this can also be timeouts etc, investigate.
Err(tcp::RecvError::Finished) | Err(tcp::RecvError::InvalidState) => {
Err(Error::ConnectionReset)
}
Ok(r) => Ok(r),
})
}
})
})
.await
}
async fn flush(&mut self) -> Result<(), Error> {
poll_fn(move |cx| {
self.with_mut(|s, _| {
let waiting_close = s.state() == tcp::State::Closed && s.remote_endpoint().is_some();
// If there are outstanding send operations, register for wake up and wait
// smoltcp issues wake-ups when octets are dequeued from the send buffer
if s.send_queue() > 0 || waiting_close {
s.register_send_waker(cx.waker());
Poll::Pending
// No outstanding sends, socket is flushed
} else {
Poll::Ready(Ok(()))
}
})
})
.await
}
fn recv_capacity(&self) -> usize {
self.with(|s, _| s.recv_capacity())
}
fn send_capacity(&self) -> usize {
self.with(|s, _| s.send_capacity())
}
}
mod embedded_io_impls {
use super::*;
impl embedded_io_async::Error for ConnectError {
fn kind(&self) -> embedded_io_async::ErrorKind {
match self {
ConnectError::ConnectionReset => embedded_io_async::ErrorKind::ConnectionReset,
ConnectError::TimedOut => embedded_io_async::ErrorKind::TimedOut,
ConnectError::NoRoute => embedded_io_async::ErrorKind::NotConnected,
ConnectError::InvalidState => embedded_io_async::ErrorKind::Other,
}
}
}
impl embedded_io_async::Error for Error {
fn kind(&self) -> embedded_io_async::ErrorKind {
match self {
Error::ConnectionReset => embedded_io_async::ErrorKind::ConnectionReset,
}
}
}
impl<'d> embedded_io_async::ErrorType for TcpSocket<'d> {
type Error = Error;
}
impl<'d> embedded_io_async::Read for TcpSocket<'d> {
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
self.io.read(buf).await
}
}
impl<'d> embedded_io_async::ReadReady for TcpSocket<'d> {
fn read_ready(&mut self) -> Result<bool, Self::Error> {
Ok(self.io.with(|s, _| s.may_recv()))
}
}
impl<'d> embedded_io_async::Write for TcpSocket<'d> {
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
self.io.write(buf).await
}
async fn flush(&mut self) -> Result<(), Self::Error> {
self.io.flush().await
}
}
impl<'d> embedded_io_async::WriteReady for TcpSocket<'d> {
fn write_ready(&mut self) -> Result<bool, Self::Error> {
Ok(self.io.with(|s, _| s.may_send()))
}
}
impl<'d> embedded_io_async::ErrorType for TcpReader<'d> {
type Error = Error;
}
impl<'d> embedded_io_async::Read for TcpReader<'d> {
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
self.io.read(buf).await
}
}
impl<'d> embedded_io_async::ReadReady for TcpReader<'d> {
fn read_ready(&mut self) -> Result<bool, Self::Error> {
Ok(self.io.with(|s, _| s.may_recv()))
}
}
impl<'d> embedded_io_async::ErrorType for TcpWriter<'d> {
type Error = Error;
}
impl<'d> embedded_io_async::Write for TcpWriter<'d> {
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
self.io.write(buf).await
}
async fn flush(&mut self) -> Result<(), Self::Error> {
self.io.flush().await
}
}
impl<'d> embedded_io_async::WriteReady for TcpWriter<'d> {
fn write_ready(&mut self) -> Result<bool, Self::Error> {
Ok(self.io.with(|s, _| s.may_send()))
}
}
}
/// TCP client compatible with `embedded-nal-async` traits.
pub mod client {
use core::cell::{Cell, UnsafeCell};
use core::mem::MaybeUninit;
use core::ptr::NonNull;
use embedded_nal_async::IpAddr;
use super::*;
/// TCP client connection pool compatible with `embedded-nal-async` traits.
///
/// The pool is capable of managing up to N concurrent connections with tx and rx buffers according to TX_SZ and RX_SZ.
pub struct TcpClient<'d, D: Driver, const N: usize, const TX_SZ: usize = 1024, const RX_SZ: usize = 1024> {
stack: &'d Stack<D>,
state: &'d TcpClientState<N, TX_SZ, RX_SZ>,
}
impl<'d, D: Driver, const N: usize, const TX_SZ: usize, const RX_SZ: usize> TcpClient<'d, D, N, TX_SZ, RX_SZ> {
/// Create a new `TcpClient`.
pub fn new(stack: &'d Stack<D>, state: &'d TcpClientState<N, TX_SZ, RX_SZ>) -> Self {
Self { stack, state }
}
}
impl<'d, D: Driver, const N: usize, const TX_SZ: usize, const RX_SZ: usize> embedded_nal_async::TcpConnect
for TcpClient<'d, D, N, TX_SZ, RX_SZ>
{
type Error = Error;
type Connection<'m> = TcpConnection<'m, N, TX_SZ, RX_SZ> where Self: 'm;
async fn connect<'a>(
&'a self,
remote: embedded_nal_async::SocketAddr,
) -> Result<Self::Connection<'a>, Self::Error> {
let addr: crate::IpAddress = match remote.ip() {
#[cfg(feature = "proto-ipv4")]
IpAddr::V4(addr) => crate::IpAddress::Ipv4(crate::Ipv4Address::from_bytes(&addr.octets())),
#[cfg(not(feature = "proto-ipv4"))]
IpAddr::V4(_) => panic!("ipv4 support not enabled"),
#[cfg(feature = "proto-ipv6")]
IpAddr::V6(addr) => crate::IpAddress::Ipv6(crate::Ipv6Address::from_bytes(&addr.octets())),
#[cfg(not(feature = "proto-ipv6"))]
IpAddr::V6(_) => panic!("ipv6 support not enabled"),
};
let remote_endpoint = (addr, remote.port());
let mut socket = TcpConnection::new(&self.stack, self.state)?;
socket
.socket
.connect(remote_endpoint)
.await
.map_err(|_| Error::ConnectionReset)?;
Ok(socket)
}
}
/// Opened TCP connection in a [`TcpClient`].
pub struct TcpConnection<'d, const N: usize, const TX_SZ: usize, const RX_SZ: usize> {
socket: TcpSocket<'d>,
state: &'d TcpClientState<N, TX_SZ, RX_SZ>,
bufs: NonNull<([u8; TX_SZ], [u8; RX_SZ])>,
}
impl<'d, const N: usize, const TX_SZ: usize, const RX_SZ: usize> TcpConnection<'d, N, TX_SZ, RX_SZ> {
fn new<D: Driver>(stack: &'d Stack<D>, state: &'d TcpClientState<N, TX_SZ, RX_SZ>) -> Result<Self, Error> {
let mut bufs = state.pool.alloc().ok_or(Error::ConnectionReset)?;
Ok(Self {
socket: unsafe { TcpSocket::new(stack, &mut bufs.as_mut().1, &mut bufs.as_mut().0) },
state,
bufs,
})
}
}
impl<'d, const N: usize, const TX_SZ: usize, const RX_SZ: usize> Drop for TcpConnection<'d, N, TX_SZ, RX_SZ> {
fn drop(&mut self) {
unsafe {
self.socket.close();
self.state.pool.free(self.bufs);
}
}
}
impl<'d, const N: usize, const TX_SZ: usize, const RX_SZ: usize> embedded_io_async::ErrorType
for TcpConnection<'d, N, TX_SZ, RX_SZ>
{
type Error = Error;
}
impl<'d, const N: usize, const TX_SZ: usize, const RX_SZ: usize> embedded_io_async::Read
for TcpConnection<'d, N, TX_SZ, RX_SZ>
{
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
self.socket.read(buf).await
}
}
impl<'d, const N: usize, const TX_SZ: usize, const RX_SZ: usize> embedded_io_async::Write
for TcpConnection<'d, N, TX_SZ, RX_SZ>
{
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
self.socket.write(buf).await
}
async fn flush(&mut self) -> Result<(), Self::Error> {
self.socket.flush().await
}
}
/// State for TcpClient
pub struct TcpClientState<const N: usize, const TX_SZ: usize, const RX_SZ: usize> {
pool: Pool<([u8; TX_SZ], [u8; RX_SZ]), N>,
}
impl<const N: usize, const TX_SZ: usize, const RX_SZ: usize> TcpClientState<N, TX_SZ, RX_SZ> {
/// Create a new `TcpClientState`.
pub const fn new() -> Self {
Self { pool: Pool::new() }
}
}
struct Pool<T, const N: usize> {
used: [Cell<bool>; N],
data: [UnsafeCell<MaybeUninit<T>>; N],
}
impl<T, const N: usize> Pool<T, N> {
const VALUE: Cell<bool> = Cell::new(false);
const UNINIT: UnsafeCell<MaybeUninit<T>> = UnsafeCell::new(MaybeUninit::uninit());
const fn new() -> Self {
Self {
used: [Self::VALUE; N],
data: [Self::UNINIT; N],
}
}
}
impl<T, const N: usize> Pool<T, N> {
fn alloc(&self) -> Option<NonNull<T>> {
for n in 0..N {
// this can't race because Pool is not Sync.
if !self.used[n].get() {
self.used[n].set(true);
let p = self.data[n].get() as *mut T;
return Some(unsafe { NonNull::new_unchecked(p) });
}
}
None
}
/// safety: p must be a pointer obtained from self.alloc that hasn't been freed yet.
unsafe fn free(&self, p: NonNull<T>) {
let origin = self.data.as_ptr() as *mut T;
let n = p.as_ptr().offset_from(origin);
assert!(n >= 0);
assert!((n as usize) < N);
self.used[n as usize].set(false);
}
}
}