1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
//! Raw executor.
//!
//! This module exposes "raw" Executor and Task structs for more low level control.
//!
//! ## WARNING: here be dragons!
//!
//! Using this module requires respecting subtle safety contracts. If you can, prefer using the safe
//! [executor wrappers](crate::Executor) and the [`embassy_executor::task`](embassy_macros::task) macro, which are fully safe.
mod run_queue;
#[cfg(feature = "integrated-timers")]
mod timer_queue;
pub(crate) mod util;
mod waker;
use core::cell::Cell;
use core::future::Future;
use core::pin::Pin;
use core::ptr::NonNull;
use core::task::{Context, Poll};
use core::{mem, ptr};
use atomic_polyfill::{AtomicU32, Ordering};
use critical_section::CriticalSection;
#[cfg(feature = "integrated-timers")]
use embassy_time::driver::{self, AlarmHandle};
#[cfg(feature = "integrated-timers")]
use embassy_time::Instant;
#[cfg(feature = "rtos-trace")]
use rtos_trace::trace;
use self::run_queue::{RunQueue, RunQueueItem};
use self::util::UninitCell;
pub use self::waker::task_from_waker;
use super::SpawnToken;
/// Task is spawned (has a future)
pub(crate) const STATE_SPAWNED: u32 = 1 << 0;
/// Task is in the executor run queue
pub(crate) const STATE_RUN_QUEUED: u32 = 1 << 1;
/// Task is in the executor timer queue
#[cfg(feature = "integrated-timers")]
pub(crate) const STATE_TIMER_QUEUED: u32 = 1 << 2;
/// Raw task header for use in task pointers.
///
/// This is an opaque struct, used for raw pointers to tasks, for use
/// with funtions like [`wake_task`] and [`task_from_waker`].
pub struct TaskHeader {
pub(crate) state: AtomicU32,
pub(crate) run_queue_item: RunQueueItem,
pub(crate) executor: Cell<*const Executor>, // Valid if state != 0
pub(crate) poll_fn: UninitCell<unsafe fn(NonNull<TaskHeader>)>, // Valid if STATE_SPAWNED
#[cfg(feature = "integrated-timers")]
pub(crate) expires_at: Cell<Instant>,
#[cfg(feature = "integrated-timers")]
pub(crate) timer_queue_item: timer_queue::TimerQueueItem,
}
impl TaskHeader {
pub(crate) const fn new() -> Self {
Self {
state: AtomicU32::new(0),
run_queue_item: RunQueueItem::new(),
executor: Cell::new(ptr::null()),
poll_fn: UninitCell::uninit(),
#[cfg(feature = "integrated-timers")]
expires_at: Cell::new(Instant::from_ticks(0)),
#[cfg(feature = "integrated-timers")]
timer_queue_item: timer_queue::TimerQueueItem::new(),
}
}
}
/// Raw storage in which a task can be spawned.
///
/// This struct holds the necessary memory to spawn one task whose future is `F`.
/// At a given time, the `TaskStorage` may be in spawned or not-spawned state. You
/// may spawn it with [`TaskStorage::spawn()`], which will fail if it is already spawned.
///
/// A `TaskStorage` must live forever, it may not be deallocated even after the task has finished
/// running. Hence the relevant methods require `&'static self`. It may be reused, however.
///
/// Internally, the [embassy_executor::task](embassy_macros::task) macro allocates an array of `TaskStorage`s
/// in a `static`. The most common reason to use the raw `Task` is to have control of where
/// the memory for the task is allocated: on the stack, or on the heap with e.g. `Box::leak`, etc.
// repr(C) is needed to guarantee that the Task is located at offset 0
// This makes it safe to cast between TaskHeader and TaskStorage pointers.
#[repr(C)]
pub struct TaskStorage<F: Future + 'static> {
raw: TaskHeader,
future: UninitCell<F>, // Valid if STATE_SPAWNED
}
impl<F: Future + 'static> TaskStorage<F> {
const NEW: Self = Self::new();
/// Create a new TaskStorage, in not-spawned state.
pub const fn new() -> Self {
Self {
raw: TaskHeader::new(),
future: UninitCell::uninit(),
}
}
/// Try to spawn the task.
///
/// The `future` closure constructs the future. It's only called if spawning is
/// actually possible. It is a closure instead of a simple `future: F` param to ensure
/// the future is constructed in-place, avoiding a temporary copy in the stack thanks to
/// NRVO optimizations.
///
/// This function will fail if the task is already spawned and has not finished running.
/// In this case, the error is delayed: a "poisoned" SpawnToken is returned, which will
/// cause [`Spawner::spawn()`](super::Spawner::spawn) to return the error.
///
/// Once the task has finished running, you may spawn it again. It is allowed to spawn it
/// on a different executor.
pub fn spawn(&'static self, future: impl FnOnce() -> F) -> SpawnToken<impl Sized> {
if self.spawn_mark_used() {
return unsafe { SpawnToken::<F>::new(self.spawn_initialize(future)) };
}
SpawnToken::<F>::new_failed()
}
fn spawn_mark_used(&'static self) -> bool {
let state = STATE_SPAWNED | STATE_RUN_QUEUED;
self.raw
.state
.compare_exchange(0, state, Ordering::AcqRel, Ordering::Acquire)
.is_ok()
}
unsafe fn spawn_initialize(&'static self, future: impl FnOnce() -> F) -> NonNull<TaskHeader> {
// Initialize the task
self.raw.poll_fn.write(Self::poll);
self.future.write(future());
NonNull::new_unchecked(self as *const TaskStorage<F> as *const TaskHeader as *mut TaskHeader)
}
unsafe fn poll(p: NonNull<TaskHeader>) {
let this = &*(p.as_ptr() as *const TaskStorage<F>);
let future = Pin::new_unchecked(this.future.as_mut());
let waker = waker::from_task(p);
let mut cx = Context::from_waker(&waker);
match future.poll(&mut cx) {
Poll::Ready(_) => {
this.future.drop_in_place();
this.raw.state.fetch_and(!STATE_SPAWNED, Ordering::AcqRel);
}
Poll::Pending => {}
}
// the compiler is emitting a virtual call for waker drop, but we know
// it's a noop for our waker.
mem::forget(waker);
}
}
unsafe impl<F: Future + 'static> Sync for TaskStorage<F> {}
/// Raw storage that can hold up to N tasks of the same type.
///
/// This is essentially a `[TaskStorage<F>; N]`.
pub struct TaskPool<F: Future + 'static, const N: usize> {
pool: [TaskStorage<F>; N],
}
impl<F: Future + 'static, const N: usize> TaskPool<F, N> {
/// Create a new TaskPool, with all tasks in non-spawned state.
pub const fn new() -> Self {
Self {
pool: [TaskStorage::NEW; N],
}
}
/// Try to spawn a task in the pool.
///
/// See [`TaskStorage::spawn()`] for details.
///
/// This will loop over the pool and spawn the task in the first storage that
/// is currently free. If none is free, a "poisoned" SpawnToken is returned,
/// which will cause [`Spawner::spawn()`](super::Spawner::spawn) to return the error.
pub fn spawn(&'static self, future: impl FnOnce() -> F) -> SpawnToken<impl Sized> {
for task in &self.pool {
if task.spawn_mark_used() {
return unsafe { SpawnToken::<F>::new(task.spawn_initialize(future)) };
}
}
SpawnToken::<F>::new_failed()
}
/// Like spawn(), but allows the task to be send-spawned if the args are Send even if
/// the future is !Send.
///
/// Not covered by semver guarantees. DO NOT call this directly. Intended to be used
/// by the Embassy macros ONLY.
///
/// SAFETY: `future` must be a closure of the form `move || my_async_fn(args)`, where `my_async_fn`
/// is an `async fn`, NOT a hand-written `Future`.
#[doc(hidden)]
pub unsafe fn _spawn_async_fn<FutFn>(&'static self, future: FutFn) -> SpawnToken<impl Sized>
where
FutFn: FnOnce() -> F,
{
// When send-spawning a task, we construct the future in this thread, and effectively
// "send" it to the executor thread by enqueuing it in its queue. Therefore, in theory,
// send-spawning should require the future `F` to be `Send`.
//
// The problem is this is more restrictive than needed. Once the future is executing,
// it is never sent to another thread. It is only sent when spawning. It should be
// enough for the task's arguments to be Send. (and in practice it's super easy to
// accidentally make your futures !Send, for example by holding an `Rc` or a `&RefCell` across an `.await`.)
//
// We can do it by sending the task args and constructing the future in the executor thread
// on first poll. However, this cannot be done in-place, so it'll waste stack space for a copy
// of the args.
//
// Luckily, an `async fn` future contains just the args when freshly constructed. So, if the
// args are Send, it's OK to send a !Send future, as long as we do it before first polling it.
//
// (Note: this is how the generators are implemented today, it's not officially guaranteed yet,
// but it's possible it'll be guaranteed in the future. See zulip thread:
// https://rust-lang.zulipchat.com/#narrow/stream/187312-wg-async/topic/.22only.20before.20poll.22.20Send.20futures )
//
// The `FutFn` captures all the args, so if it's Send, the task can be send-spawned.
// This is why we return `SpawnToken<FutFn>` below.
//
// This ONLY holds for `async fn` futures. The other `spawn` methods can be called directly
// by the user, with arbitrary hand-implemented futures. This is why these return `SpawnToken<F>`.
for task in &self.pool {
if task.spawn_mark_used() {
return SpawnToken::<FutFn>::new(task.spawn_initialize(future));
}
}
SpawnToken::<FutFn>::new_failed()
}
}
/// Raw executor.
///
/// This is the core of the Embassy executor. It is low-level, requiring manual
/// handling of wakeups and task polling. If you can, prefer using one of the
/// [higher level executors](crate::Executor).
///
/// The raw executor leaves it up to you to handle wakeups and scheduling:
///
/// - To get the executor to do work, call `poll()`. This will poll all queued tasks (all tasks
/// that "want to run").
/// - You must supply a `signal_fn`. The executor will call it to notify you it has work
/// to do. You must arrange for `poll()` to be called as soon as possible.
///
/// `signal_fn` can be called from *any* context: any thread, any interrupt priority
/// level, etc. It may be called synchronously from any `Executor` method call as well.
/// You must deal with this correctly.
///
/// In particular, you must NOT call `poll` directly from `signal_fn`, as this violates
/// the requirement for `poll` to not be called reentrantly.
pub struct Executor {
run_queue: RunQueue,
signal_fn: fn(*mut ()),
signal_ctx: *mut (),
#[cfg(feature = "integrated-timers")]
pub(crate) timer_queue: timer_queue::TimerQueue,
#[cfg(feature = "integrated-timers")]
alarm: AlarmHandle,
}
impl Executor {
/// Create a new executor.
///
/// When the executor has work to do, it will call `signal_fn` with
/// `signal_ctx` as argument.
///
/// See [`Executor`] docs for details on `signal_fn`.
pub fn new(signal_fn: fn(*mut ()), signal_ctx: *mut ()) -> Self {
#[cfg(feature = "integrated-timers")]
let alarm = unsafe { unwrap!(driver::allocate_alarm()) };
#[cfg(feature = "integrated-timers")]
driver::set_alarm_callback(alarm, signal_fn, signal_ctx);
Self {
run_queue: RunQueue::new(),
signal_fn,
signal_ctx,
#[cfg(feature = "integrated-timers")]
timer_queue: timer_queue::TimerQueue::new(),
#[cfg(feature = "integrated-timers")]
alarm,
}
}
/// Enqueue a task in the task queue
///
/// # Safety
/// - `task` must be a valid pointer to a spawned task.
/// - `task` must be set up to run in this executor.
/// - `task` must NOT be already enqueued (in this executor or another one).
#[inline(always)]
unsafe fn enqueue(&self, cs: CriticalSection, task: NonNull<TaskHeader>) {
#[cfg(feature = "rtos-trace")]
trace::task_ready_begin(task.as_ptr() as u32);
if self.run_queue.enqueue(cs, task) {
(self.signal_fn)(self.signal_ctx)
}
}
/// Spawn a task in this executor.
///
/// # Safety
///
/// `task` must be a valid pointer to an initialized but not-already-spawned task.
///
/// It is OK to use `unsafe` to call this from a thread that's not the executor thread.
/// In this case, the task's Future must be Send. This is because this is effectively
/// sending the task to the executor thread.
pub(super) unsafe fn spawn(&'static self, task: NonNull<TaskHeader>) {
task.as_ref().executor.set(self);
#[cfg(feature = "rtos-trace")]
trace::task_new(task.as_ptr() as u32);
critical_section::with(|cs| {
self.enqueue(cs, task);
})
}
/// Poll all queued tasks in this executor.
///
/// This loops over all tasks that are queued to be polled (i.e. they're
/// freshly spawned or they've been woken). Other tasks are not polled.
///
/// You must call `poll` after receiving a call to `signal_fn`. It is OK
/// to call `poll` even when not requested by `signal_fn`, but it wastes
/// energy.
///
/// # Safety
///
/// You must NOT call `poll` reentrantly on the same executor.
///
/// In particular, note that `poll` may call `signal_fn` synchronously. Therefore, you
/// must NOT directly call `poll()` from your `signal_fn`. Instead, `signal_fn` has to
/// somehow schedule for `poll()` to be called later, at a time you know for sure there's
/// no `poll()` already running.
pub unsafe fn poll(&'static self) {
loop {
#[cfg(feature = "integrated-timers")]
self.timer_queue.dequeue_expired(Instant::now(), |task| wake_task(task));
self.run_queue.dequeue_all(|p| {
let task = p.as_ref();
#[cfg(feature = "integrated-timers")]
task.expires_at.set(Instant::MAX);
let state = task.state.fetch_and(!STATE_RUN_QUEUED, Ordering::AcqRel);
if state & STATE_SPAWNED == 0 {
// If task is not running, ignore it. This can happen in the following scenario:
// - Task gets dequeued, poll starts
// - While task is being polled, it gets woken. It gets placed in the queue.
// - Task poll finishes, returning done=true
// - RUNNING bit is cleared, but the task is already in the queue.
return;
}
#[cfg(feature = "rtos-trace")]
trace::task_exec_begin(p.as_ptr() as u32);
// Run the task
task.poll_fn.read()(p as _);
#[cfg(feature = "rtos-trace")]
trace::task_exec_end();
// Enqueue or update into timer_queue
#[cfg(feature = "integrated-timers")]
self.timer_queue.update(p);
});
#[cfg(feature = "integrated-timers")]
{
// If this is already in the past, set_alarm might return false
// In that case do another poll loop iteration.
let next_expiration = self.timer_queue.next_expiration();
if driver::set_alarm(self.alarm, next_expiration.as_ticks()) {
break;
}
}
#[cfg(not(feature = "integrated-timers"))]
{
break;
}
}
#[cfg(feature = "rtos-trace")]
trace::system_idle();
}
/// Get a spawner that spawns tasks in this executor.
///
/// It is OK to call this method multiple times to obtain multiple
/// `Spawner`s. You may also copy `Spawner`s.
pub fn spawner(&'static self) -> super::Spawner {
super::Spawner::new(self)
}
}
/// Wake a task by raw pointer.
///
/// You can obtain task pointers from `Waker`s using [`task_from_waker`].
///
/// # Safety
///
/// `task` must be a valid task pointer obtained from [`task_from_waker`].
pub unsafe fn wake_task(task: NonNull<TaskHeader>) {
critical_section::with(|cs| {
let header = task.as_ref();
let state = header.state.load(Ordering::Relaxed);
// If already scheduled, or if not started,
if (state & STATE_RUN_QUEUED != 0) || (state & STATE_SPAWNED == 0) {
return;
}
// Mark it as scheduled
header.state.store(state | STATE_RUN_QUEUED, Ordering::Relaxed);
// We have just marked the task as scheduled, so enqueue it.
let executor = &*header.executor.get();
executor.enqueue(cs, task);
})
}
#[cfg(feature = "integrated-timers")]
struct TimerQueue;
#[cfg(feature = "integrated-timers")]
impl embassy_time::queue::TimerQueue for TimerQueue {
fn schedule_wake(&'static self, at: Instant, waker: &core::task::Waker) {
let task = waker::task_from_waker(waker);
let task = unsafe { task.as_ref() };
let expires_at = task.expires_at.get();
task.expires_at.set(expires_at.min(at));
}
}
#[cfg(feature = "integrated-timers")]
embassy_time::timer_queue_impl!(static TIMER_QUEUE: TimerQueue = TimerQueue);
#[cfg(feature = "rtos-trace")]
impl rtos_trace::RtosTraceOSCallbacks for Executor {
fn task_list() {
// We don't know what tasks exist, so we can't send them.
}
#[cfg(feature = "integrated-timers")]
fn time() -> u64 {
Instant::now().as_micros()
}
#[cfg(not(feature = "integrated-timers"))]
fn time() -> u64 {
0
}
}
#[cfg(feature = "rtos-trace")]
rtos_trace::global_os_callbacks! {Executor}