1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
//! # Thread pool
//!
//! Module dedicated to thread pool management. The [`ThreadPool`] is
//! the main structure of this module: it basically spawns n threads
//! and transfers tasks to them using an unbounded channel. The
//! receiver part is shared accross all threads in a mutex, this way
//! only one thread can wait for a task at a time. When a thread
//! receives a task, it releases the lock and an other thread can wait
//! for the next task. A task is a function that takes a
//! [`ThreadPoolContextBuilder::Context`] and returns a future. The
//! easiest way to build a pool is to use the [`ThreadPoolBuilder`].
use async_trait::async_trait;
use futures::{lock::Mutex, stream::FuturesUnordered, Future, StreamExt};
use log::debug;
use std::{
pin::Pin,
sync::Arc,
task::{Context, Poll, Waker},
};
use tokio::{sync::mpsc, task::JoinHandle};
use crate::Result;
/// The thread pool task.
pub type ThreadPoolTask<C> =
Box<dyn FnOnce(Arc<C>) -> Pin<Box<dyn Future<Output = ()> + Send>> + Send + Sync>;
/// The thread pool task resolver.
///
/// The resolver awaits for a task to be executed by one of the
/// available thread of the pool using a shared state.
pub struct ThreadPoolTaskResolver<T>(Arc<Mutex<ThreadPoolTaskResolverState<T>>>);
impl<T> ThreadPoolTaskResolver<T> {
/// Create a new task resolver with an empty state.
pub fn new() -> Self {
let state = ThreadPoolTaskResolverState {
output: None,
waker: None,
};
Self(Arc::new(Mutex::new(state)))
}
/// Resolves the given task.
///
/// The task output is saved into the shared state, and if a waker
/// is found in the shared state the resolver is polled again.
pub async fn resolve(&self, task: impl Future<Output = T> + Send + 'static) {
let output = task.await;
let mut state = self.0.lock().await;
state.output = Some(output);
if let Some(waker) = state.waker.take() {
waker.wake()
}
}
}
impl<T> Clone for ThreadPoolTaskResolver<T> {
fn clone(&self) -> Self {
Self(self.0.clone())
}
}
impl<T> Future for ThreadPoolTaskResolver<T> {
type Output = T;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
match Box::pin(self.0.lock()).as_mut().poll(cx) {
Poll::Pending => Poll::Pending,
Poll::Ready(mut state) => match state.output.take() {
Some(output) => Poll::Ready(output),
None => {
state.waker = Some(cx.waker().clone());
Poll::Pending
}
},
}
}
}
/// The thread pool task resolver shared state.
pub struct ThreadPoolTaskResolverState<T> {
/// The output of the resolved task.
output: Option<T>,
/// The resolver waker.
waker: Option<Waker>,
}
/// The thread pool.
pub struct ThreadPool<C: ThreadPoolContext> {
/// Channel used by the pool.
///
/// This channel is used to send tasks to threads.
tx: mpsc::UnboundedSender<ThreadPoolTask<C>>,
/// Channel used by threads.
///
/// Only one thread can receive a task at a time. When a thread
/// receives a task, it releases the lock and a new thread can
/// receive the next task.
rx: Arc<Mutex<mpsc::UnboundedReceiver<ThreadPoolTask<C>>>>,
/// The list of threads spawned by the pool.
threads: Vec<JoinHandle<Result<()>>>,
}
impl<C> ThreadPool<C>
where
C: ThreadPoolContext + 'static,
{
/// Execute the given task and awaits for its resolution.
///
/// The task is sent to the pool channel and will be executed by
/// the first available thread. This function awaits for its
/// resolution.
pub async fn exec<F, T>(&self, task: impl FnOnce(Arc<C>) -> F + Send + Sync + 'static) -> T
where
F: Future<Output = T> + Send + 'static,
T: Send + 'static,
{
let resolver = ThreadPoolTaskResolver::new();
let r = resolver.clone();
let task: ThreadPoolTask<C> = Box::new(move |ctx| {
let task = async move { r.resolve(task(ctx)).await };
Box::pin(task)
});
self.tx.send(task).unwrap();
resolver.await
}
/// Abort pool threads and close the channel.
pub async fn close(self) {
for thread in &self.threads {
thread.abort()
}
self.rx.lock().await.close();
}
}
/// The thread pool builder.
///
/// Builder that help you to create a [`ThreadPool`].
#[derive(Clone)]
pub struct ThreadPoolBuilder<B: ThreadPoolContextBuilder> {
/// The context builder.
ctx_builder: B,
/// The size of the pool.
///
/// Represents the number of threads that will be spawn in
/// parallel. Defaults to 8.
size: usize,
}
impl<B: ThreadPoolContextBuilder + 'static> ThreadPoolBuilder<B> {
/// Create a new thread pool builder with a context builder.
pub fn new(ctx_builder: B) -> Self {
Self {
ctx_builder,
size: 8,
}
}
/// Change the thread pool size.
pub fn set_size(&mut self, size: usize) {
self.size = size;
}
/// Change the thread pool size using the builder pattern.
pub fn with_size(mut self, size: usize) -> Self {
self.set_size(size);
self
}
/// Build the final thread pool.
pub async fn build(self) -> Result<ThreadPool<B::Context>> {
let (tx, rx) = mpsc::unbounded_channel::<ThreadPoolTask<B::Context>>();
let rx = Arc::new(Mutex::new(rx));
let ctxs = FuturesUnordered::from_iter(
(0..self.size).map(move |_| tokio::spawn(self.ctx_builder.clone().build())),
)
.collect::<Vec<_>>()
.await;
let mut threads = Vec::with_capacity(self.size);
for (i, ctx) in ctxs.into_iter().enumerate() {
let ctx = ctx??;
let thread_id = i + 1;
let rx = rx.clone();
threads.push(tokio::spawn(async move {
let ctx = Arc::new(ctx);
loop {
let mut lock = rx.lock().await;
debug!("thread {thread_id} waiting for a task…");
match lock.recv().await {
None => {
drop(lock);
break;
}
Some(task) => {
drop(lock);
debug!("thread {thread_id} received a task, executing it…");
task(ctx.clone()).await;
debug!("thread {thread_id} successfully executed task!");
}
}
}
debug!("no more task for thread {thread_id}, exitting");
Result::Ok(())
}));
}
Ok(ThreadPool { tx, rx, threads })
}
}
/// The thread pool context builder.
#[async_trait]
pub trait ThreadPoolContextBuilder: Clone + Send + Sync {
/// The context built by this trait.
type Context: ThreadPoolContext;
/// Build the thread pool context.
async fn build(self) -> Result<Self::Context>;
}
pub trait ThreadPoolContext: Send + Sync {
//
}