1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
//! Elinor (**E**valuation **l**ibrary in **in**f**o**rmation **r**etrieval) is a library
//! for evaluating information retrieval (IR) systems.
//! It provides a comprehensive set of tools and metrics tailored for IR engineers,
//! offering an intuitive and easy-to-use interface.
//!
//! # Key features
//!
//! * **IR-specific design:**
//! Elinor is tailored specifically for evaluating IR systems, with an intuitive interface designed for IR engineers.
//! It offers a streamlined workflow that simplifies common IR evaluation tasks.
//! * **Comprehensive evaluation metrics:**
//! Elinor supports a wide range of key evaluation metrics, such as Precision, MAP, MRR, and nDCG.
//! The supported metrics are available in [`Metric`].
//! The evaluation results are validated against trec_eval to ensure accuracy and reliability.
//! * **In-depth statistical testing:**
//! Elinor includes several statistical tests, such as Student's t-test or Randomized Tukey HSD test, to verify the generalizability of results.
//! Not only p-values but also other statistics, such as effect sizes and confidence intervals, are provided for thorough reporting.
//! See the [`statistical_tests`] module for more details.
//!
//! # Basic usage in evaluating several metrics
//!
//! You first need to prepare gold relevance judgments and predicted relevance scores through
//! [`GoldRelStore`] and [`PredRelStore`], respectively.
//! You can build these instances using [`GoldRelStoreBuilder`] and [`PredRelStoreBuilder`].
//!
//! Then, you can evaluate the predicted relevance scores using the [`evaluate`] function and
//! the specified metric. The available metrics are defined in the [`Metric`] enum.
//!
//! An example is shown below:
//!
//! ```
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! use approx::assert_abs_diff_eq;
//! use elinor::{GoldRelStoreBuilder, PredRelStoreBuilder, Metric};
//!
//! // Prepare gold relevance scores.
//! // In binary-relevance metrics, 0 means non-relevant and the others mean relevant.
//! let mut b = GoldRelStoreBuilder::new();
//! b.add_score("q_1", "d_1", 1)?;
//! b.add_score("q_1", "d_2", 0)?;
//! b.add_score("q_1", "d_3", 2)?;
//! b.add_score("q_2", "d_2", 2)?;
//! b.add_score("q_2", "d_4", 1)?;
//! let gold_rels = b.build();
//!
//! // Prepare predicted relevance scores.
//! let mut b = PredRelStoreBuilder::new();
//! b.add_score("q_1", "d_1", 0.5.into())?;
//! b.add_score("q_1", "d_2", 0.4.into())?;
//! b.add_score("q_1", "d_3", 0.3.into())?;
//! b.add_score("q_2", "d_4", 0.1.into())?;
//! b.add_score("q_2", "d_1", 0.2.into())?;
//! b.add_score("q_2", "d_3", 0.3.into())?;
//! let pred_rels = b.build();
//!
//! // Evaluate Precision@3.
//! let evaluated = elinor::evaluate(&gold_rels, &pred_rels, Metric::Precision { k: 3 })?;
//! assert_abs_diff_eq!(evaluated.mean_score(), 0.5000, epsilon = 1e-4);
//!
//! // Evaluate MAP, where all documents are considered via k=0.
//! let evaluated = elinor::evaluate(&gold_rels, &pred_rels, Metric::AP { k: 0 })?;
//! assert_abs_diff_eq!(evaluated.mean_score(), 0.5000, epsilon = 1e-4);
//!
//! // Evaluate MRR, where the metric is specified via a string representation.
//! let evaluated = elinor::evaluate(&gold_rels, &pred_rels, "rr".parse()?)?;
//! assert_abs_diff_eq!(evaluated.mean_score(), 0.6667, epsilon = 1e-4);
//!
//! // Evaluate nDCG@3, where the metric is specified via a string representation.
//! let evaluated = elinor::evaluate(&gold_rels, &pred_rels, "ndcg@3".parse()?)?;
//! assert_abs_diff_eq!(evaluated.mean_score(), 0.4751, epsilon = 1e-4);
//! # Ok(())
//! # }
//! ```
//!
//! # Relevance stores from [`HashMap`]
//!
//! [`GoldRelStore`] and [`PredRelStore`] can also be instantiated from [`HashMap`]s.
//! The following mapping structure is expected:
//!
//! ```text
//! query_id => { doc_id => score }
//! ```
//!
//! It allows you to prepare data in JSON or other formats via [Serde](https://serde.rs/).
//! If you use Serde, enable the `serde` feature in the `Cargo.toml`:
//!
//! ```toml
//! [dependencies]
//! elinor = { version = "*", features = ["serde"] }
//! ```
//!
//! An example to instantiate relevance stores from JSON is shown below:
//!
//! ```
//! # #[cfg(not(feature = "serde"))]
//! # fn main() {}
//! #
//! # #[cfg(feature = "serde")]
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! use std::collections::HashMap;
//! use elinor::{GoldRelStore, GoldScore, PredRelStore, PredScore};
//!
//! let gold_rels_data = r#"
//! {
//! "q_1": {
//! "d_1": 1,
//! "d_2": 0,
//! "d_3": 2
//! },
//! "q_2": {
//! "d_2": 2,
//! "d_4": 1
//! }
//! }"#;
//!
//! let pred_rels_data = r#"
//! {
//! "q_1": {
//! "d_1": 0.5,
//! "d_2": 0.4,
//! "d_3": 0.3
//! },
//! "q_2": {
//! "d_3": 0.3,
//! "d_1": 0.2,
//! "d_4": 0.1
//! }
//! }"#;
//!
//! let gold_rels_map: HashMap<String, HashMap<String, GoldScore>> =
//! serde_json::from_str(gold_rels_data)?;
//! let pred_rels_map: HashMap<String, HashMap<String, PredScore>> =
//! serde_json::from_str(pred_rels_data)?;
//!
//! let gold_rels = GoldRelStore::from_map(gold_rels_map);
//! let pred_rels = PredRelStore::from_map(pred_rels_map);
//!
//! assert_eq!(gold_rels.n_queries(), 2);
//! assert_eq!(gold_rels.n_docs(), 5);
//! assert_eq!(pred_rels.n_queries(), 2);
//! assert_eq!(pred_rels.n_docs(), 6);
//! # Ok(())
//! # }
//! ```
//!
//! # Crate features
//!
//! * `serde` - Enables Serde for [`PredScore`].
#![deny(missing_docs)]
pub mod errors;
pub mod metrics;
pub mod relevance;
pub mod statistical_tests;
pub mod trec;
use std::collections::HashMap;
use ordered_float::OrderedFloat;
pub use errors::ElinorError;
pub use metrics::Metric;
pub use relevance::Relevance;
/// Data type to store a gold relevance score.
/// In binary relevance, 0 means non-relevant and the others mean relevant.
pub type GoldScore = u32;
/// Data type to store a predicted relevance score.
/// A higher score means more relevant.
pub type PredScore = OrderedFloat<f64>;
/// Data structure to store gold relevance scores.
pub type GoldRelStore<K> = relevance::RelevanceStore<K, GoldScore>;
/// Builder for [`GoldRelStore`].
pub type GoldRelStoreBuilder<K> = relevance::RelevanceStoreBuilder<K, GoldScore>;
/// Data structure to store predicted relevance scores.
pub type PredRelStore<K> = relevance::RelevanceStore<K, PredScore>;
/// Builder for [`PredRelStore`].
pub type PredRelStoreBuilder<K> = relevance::RelevanceStoreBuilder<K, PredScore>;
/// Struct to store evaluated results.
pub struct Evaluated<K> {
scores: HashMap<K, f64>,
mean_score: f64,
}
impl<K> Evaluated<K> {
/// Returns the reference to the mappping from query ids to scores.
pub const fn scores(&self) -> &HashMap<K, f64> {
&self.scores
}
/// Returns the macro-averaged score.
pub const fn mean_score(&self) -> f64 {
self.mean_score
}
}
/// Evaluates the given predicted relevance scores against the gold relevance scores.
pub fn evaluate<K>(
gold_rels: &GoldRelStore<K>,
pred_rels: &PredRelStore<K>,
metric: Metric,
) -> Result<Evaluated<K>, ElinorError>
where
K: Clone + Eq + Ord + std::hash::Hash + std::fmt::Display,
{
let scores = metrics::compute_metric(gold_rels, pred_rels, metric)?;
let mean_score = scores.values().sum::<f64>() / scores.len() as f64;
Ok(Evaluated { scores, mean_score })
}
/// Extracts paired scores from two [`Evaluated`] results.
///
/// # Errors
///
/// * [`ElinorError::InvalidArgument`] if the two evaluated results have different sets of queries.
pub fn paired_scores_from_evaluated<K>(
a: &Evaluated<K>,
b: &Evaluated<K>,
) -> Result<Vec<(f64, f64)>, ElinorError>
where
K: Clone + Eq + Ord + std::hash::Hash + std::fmt::Display,
{
let a = a.scores();
let b = b.scores();
if a.len() != b.len() {
return Err(ElinorError::InvalidArgument(
"The two evaluated results must have the same number of queries.".to_string(),
));
}
// Sort query ids to ensure the order of paired scores.
let mut query_ids = a.keys().cloned().collect::<Vec<_>>();
query_ids.sort_unstable();
let mut paired_scores = vec![];
for query_id in query_ids {
let score_a = a.get(&query_id).unwrap();
let score_b = b.get(&query_id).ok_or_else(|| {
ElinorError::InvalidArgument(format!(
"The query id {} is not found in the second evaluated result.",
query_id
))
})?;
paired_scores.push((*score_a, *score_b));
}
Ok(paired_scores)
}
/// Extracts tupled scores from multiple [`Evaluated`] results.
///
/// # Errors
///
/// * [`ElinorError::InvalidArgument`] if the evaluated results have different sets of queries.
pub fn tupled_scores_from_evaluated<K>(
evaluateds: &[Evaluated<K>],
) -> Result<Vec<Vec<f64>>, ElinorError>
where
K: Clone + Eq + Ord + std::hash::Hash + std::fmt::Display,
{
if evaluateds.len() < 2 {
return Err(ElinorError::InvalidArgument(
"The number of evaluated results must be at least 2.".to_string(),
));
}
let score_maps = evaluateds.iter().map(|e| e.scores()).collect::<Vec<_>>();
for i in 1..score_maps.len() {
if score_maps[i].len() != score_maps[0].len() {
return Err(ElinorError::InvalidArgument(
"The evaluated results must have the same number of queries.".to_string(),
));
}
}
let mut query_ids = score_maps[0].keys().cloned().collect::<Vec<_>>();
query_ids.sort_unstable();
let mut tupled_scores = vec![];
for query_id in query_ids {
let mut scores = vec![];
for score_map in &score_maps {
if let Some(score) = score_map.get(&query_id) {
scores.push(*score);
} else {
return Err(ElinorError::InvalidArgument(format!(
"The query id {} is not found in the evaluated results.",
query_id
)));
}
}
tupled_scores.push(scores);
}
Ok(tupled_scores)
}
#[cfg(test)]
mod tests {
use super::*;
use approx::assert_relative_eq;
use maplit::hashmap;
#[test]
fn test_evaluate() {
let mut b = GoldRelStoreBuilder::new();
b.add_score("q_1", "d_1", 1).unwrap();
b.add_score("q_1", "d_2", 0).unwrap();
b.add_score("q_1", "d_3", 2).unwrap();
b.add_score("q_2", "d_2", 2).unwrap();
b.add_score("q_2", "d_4", 1).unwrap();
let gold_rels = b.build();
let mut b = PredRelStoreBuilder::new();
b.add_score("q_1", "d_1", 0.5.into()).unwrap();
b.add_score("q_1", "d_2", 0.4.into()).unwrap();
b.add_score("q_1", "d_3", 0.3.into()).unwrap();
b.add_score("q_2", "d_4", 0.1.into()).unwrap();
b.add_score("q_2", "d_1", 0.2.into()).unwrap();
b.add_score("q_2", "d_3", 0.3.into()).unwrap();
let pred_rels = b.build();
let evaluated = evaluate(&gold_rels, &pred_rels, Metric::Precision { k: 3 }).unwrap();
assert_relative_eq!(evaluated.mean_score(), (2. / 3. + 1. / 3.) / 2.);
let scores = evaluated.scores();
assert_eq!(scores.len(), 2);
assert_relative_eq!(scores["q_1"], 2. / 3.);
assert_relative_eq!(scores["q_2"], 1. / 3.);
}
#[test]
fn test_paired_scores_from_evaluated() {
let evaluated_a = Evaluated {
scores: hashmap! {
"q_1" => 2.,
"q_2" => 5.,
},
mean_score: 3.5,
};
let evaluated_b = Evaluated {
scores: hashmap! {
"q_1" => 1.,
"q_2" => 0.,
},
mean_score: 0.5,
};
let paired_scores = paired_scores_from_evaluated(&evaluated_a, &evaluated_b).unwrap();
assert_eq!(paired_scores, vec![(2., 1.), (5., 0.)]);
}
#[test]
fn test_paired_scores_from_evaluated_different_n_queries() {
let evaluated_a = Evaluated {
scores: hashmap! {
"q_1" => 2.,
"q_2" => 5.,
},
mean_score: 3.5,
};
let evaluated_b = Evaluated {
scores: hashmap! {
"q_1" => 1.,
},
mean_score: 1.0,
};
let result = paired_scores_from_evaluated(&evaluated_a, &evaluated_b);
assert_eq!(
result.unwrap_err(),
ElinorError::InvalidArgument(
"The two evaluated results must have the same number of queries.".to_string()
)
);
}
#[test]
fn test_paired_scores_from_evaluated_missing_query_id() {
let evaluated_a = Evaluated {
scores: hashmap! {
"q_1" => 2.,
"q_2" => 5.,
},
mean_score: 3.5,
};
let evaluated_b = Evaluated {
scores: hashmap! {
"q_1" => 1.,
"q_3" => 0.,
},
mean_score: 0.5,
};
let result = paired_scores_from_evaluated(&evaluated_a, &evaluated_b);
assert_eq!(
result.unwrap_err(),
ElinorError::InvalidArgument(
"The query id q_2 is not found in the second evaluated result.".to_string()
)
);
}
#[test]
fn test_tupled_scores_from_evaluated() {
let evaluated_a = Evaluated {
scores: hashmap! {
"q_1" => 2.,
"q_2" => 5.,
},
mean_score: 3.5,
};
let evaluated_b = Evaluated {
scores: hashmap! {
"q_1" => 1.,
"q_2" => 0.,
},
mean_score: 0.5,
};
let evaluated_c = Evaluated {
scores: hashmap! {
"q_1" => 2.,
"q_2" => 1.,
},
mean_score: 1.5,
};
let tupled_scores =
tupled_scores_from_evaluated(&[evaluated_a, evaluated_b, evaluated_c]).unwrap();
assert_eq!(tupled_scores, vec![vec![2., 1., 2.], vec![5., 0., 1.]]);
}
}