1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
//! Elinor (**E**valuation **l**ibrary in **in**f**o**rmation **r**etrieval) is a library
//! for evaluating information retrieval (IR) systems.
//! It provides a comprehensive set of tools and metrics tailored for IR engineers,
//! offering an intuitive and easy-to-use interface.
//!
//! # Key features
//!
//! * **IR-specific design:**
//!     Elinor is tailored specifically for evaluating IR systems, with an intuitive interface designed for IR engineers.
//!     It offers a streamlined workflow that simplifies common IR evaluation tasks.
//! * **Comprehensive evaluation metrics:**
//!     Elinor supports a wide range of key evaluation metrics, such as Precision, MAP, MRR, and nDCG.
//!     The supported metrics are available in [`Metric`].
//!     The evaluation results are validated against trec_eval to ensure accuracy and reliability.
//! * **In-depth statistical testing:**
//!     Elinor includes several statistical tests, such as Student's t-test or Randomized Tukey HSD test, to verify the generalizability of results.
//!     Not only p-values but also other statistics, such as effect sizes and confidence intervals, are provided for thorough reporting.
//!     See the [`statistical_tests`] module for more details.
//!
//! # Basic usage in evaluating several metrics
//!
//! You first need to prepare gold relevance judgments and predicted relevance scores through
//! [`GoldRelStore`] and [`PredRelStore`], respectively.
//! You can build these instances using [`GoldRelStoreBuilder`] and [`PredRelStoreBuilder`].
//!
//! Then, you can evaluate the predicted relevance scores using the [`evaluate`] function and
//! the specified metric. The available metrics are defined in the [`Metric`] enum.
//!
//! An example is shown below:
//!
//! ```
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! use approx::assert_abs_diff_eq;
//! use elinor::{GoldRelStoreBuilder, PredRelStoreBuilder, Metric};
//!
//! // Prepare gold relevance scores.
//! // In binary-relevance metrics, 0 means non-relevant and the others mean relevant.
//! let mut b = GoldRelStoreBuilder::new();
//! b.add_score("q_1", "d_1", 1)?;
//! b.add_score("q_1", "d_2", 0)?;
//! b.add_score("q_1", "d_3", 2)?;
//! b.add_score("q_2", "d_2", 2)?;
//! b.add_score("q_2", "d_4", 1)?;
//! let gold_rels = b.build();
//!
//! // Prepare predicted relevance scores.
//! let mut b = PredRelStoreBuilder::new();
//! b.add_score("q_1", "d_1", 0.5.into())?;
//! b.add_score("q_1", "d_2", 0.4.into())?;
//! b.add_score("q_1", "d_3", 0.3.into())?;
//! b.add_score("q_2", "d_4", 0.1.into())?;
//! b.add_score("q_2", "d_1", 0.2.into())?;
//! b.add_score("q_2", "d_3", 0.3.into())?;
//! let pred_rels = b.build();
//!
//! // Evaluate Precision@3.
//! let evaluated = elinor::evaluate(&gold_rels, &pred_rels, Metric::Precision { k: 3 })?;
//! assert_abs_diff_eq!(evaluated.mean_score(), 0.5000, epsilon = 1e-4);
//!
//! // Evaluate MAP, where all documents are considered via k=0.
//! let evaluated = elinor::evaluate(&gold_rels, &pred_rels, Metric::AP { k: 0 })?;
//! assert_abs_diff_eq!(evaluated.mean_score(), 0.5000, epsilon = 1e-4);
//!
//! // Evaluate MRR, where the metric is specified via a string representation.
//! let evaluated = elinor::evaluate(&gold_rels, &pred_rels, "rr".parse()?)?;
//! assert_abs_diff_eq!(evaluated.mean_score(), 0.6667, epsilon = 1e-4);
//!
//! // Evaluate nDCG@3, where the metric is specified via a string representation.
//! let evaluated = elinor::evaluate(&gold_rels, &pred_rels, "ndcg@3".parse()?)?;
//! assert_abs_diff_eq!(evaluated.mean_score(), 0.4751, epsilon = 1e-4);
//! # Ok(())
//! # }
//! ```
//!
//! # Relevance stores from [`HashMap`]
//!
//! [`GoldRelStore`] and [`PredRelStore`] can also be instantiated from [`HashMap`]s.
//! The following mapping structure is expected:
//!
//! ```text
//! query_id => { doc_id => score }
//! ```
//!
//! It allows you to prepare data in JSON or other formats via [Serde](https://serde.rs/).
//! If you use Serde, enable the `serde` feature in the `Cargo.toml`:
//!
//! ```toml
//! [dependencies]
//! elinor = { version = "*", features = ["serde"] }
//! ```
//!
//! An example to instantiate relevance stores from JSON is shown below:
//!
//! ```
//! # #[cfg(not(feature = "serde"))]
//! # fn main() {}
//! #
//! # #[cfg(feature = "serde")]
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! use std::collections::HashMap;
//! use elinor::{GoldRelStore, GoldScore, PredRelStore, PredScore};
//!
//! let gold_rels_data = r#"
//! {
//!     "q_1": {
//!         "d_1": 1,
//!         "d_2": 0,
//!         "d_3": 2
//!     },
//!     "q_2": {
//!         "d_2": 2,
//!         "d_4": 1
//!     }
//! }"#;
//!
//! let pred_rels_data = r#"
//! {
//!     "q_1": {
//!         "d_1": 0.5,
//!         "d_2": 0.4,
//!         "d_3": 0.3
//!     },
//!     "q_2": {
//!         "d_3": 0.3,
//!         "d_1": 0.2,
//!         "d_4": 0.1
//!     }
//! }"#;
//!
//! let gold_rels_map: HashMap<String, HashMap<String, GoldScore>> =
//!     serde_json::from_str(gold_rels_data)?;
//! let pred_rels_map: HashMap<String, HashMap<String, PredScore>> =
//!     serde_json::from_str(pred_rels_data)?;
//!
//! let gold_rels = GoldRelStore::from_map(gold_rels_map);
//! let pred_rels = PredRelStore::from_map(pred_rels_map);
//!
//! assert_eq!(gold_rels.n_queries(), 2);
//! assert_eq!(gold_rels.n_docs(), 5);
//! assert_eq!(pred_rels.n_queries(), 2);
//! assert_eq!(pred_rels.n_docs(), 6);
//! # Ok(())
//! # }
//! ```
//!
//! # Crate features
//!
//! * `serde` - Enables Serde for [`PredScore`].
#![deny(missing_docs)]

pub mod errors;
pub mod metrics;
pub mod relevance;
pub mod statistical_tests;
pub mod trec;

use std::collections::HashMap;

use ordered_float::OrderedFloat;

pub use errors::ElinorError;
pub use metrics::Metric;
pub use relevance::Relevance;

/// Data type to store a gold relevance score.
/// In binary relevance, 0 means non-relevant and the others mean relevant.
pub type GoldScore = u32;

/// Data type to store a predicted relevance score.
/// A higher score means more relevant.
pub type PredScore = OrderedFloat<f64>;

/// Data structure to store gold relevance scores.
pub type GoldRelStore<K> = relevance::RelevanceStore<K, GoldScore>;

/// Builder for [`GoldRelStore`].
pub type GoldRelStoreBuilder<K> = relevance::RelevanceStoreBuilder<K, GoldScore>;

/// Data structure to store predicted relevance scores.
pub type PredRelStore<K> = relevance::RelevanceStore<K, PredScore>;

/// Builder for [`PredRelStore`].
pub type PredRelStoreBuilder<K> = relevance::RelevanceStoreBuilder<K, PredScore>;

/// Struct to store evaluated results.
pub struct Evaluated<K> {
    scores: HashMap<K, f64>,
    mean_score: f64,
}

impl<K> Evaluated<K> {
    /// Returns the reference to the mappping from query ids to scores.
    pub const fn scores(&self) -> &HashMap<K, f64> {
        &self.scores
    }

    /// Returns the macro-averaged score.
    pub const fn mean_score(&self) -> f64 {
        self.mean_score
    }
}

/// Evaluates the given predicted relevance scores against the gold relevance scores.
pub fn evaluate<K>(
    gold_rels: &GoldRelStore<K>,
    pred_rels: &PredRelStore<K>,
    metric: Metric,
) -> Result<Evaluated<K>, ElinorError>
where
    K: Clone + Eq + Ord + std::hash::Hash + std::fmt::Display,
{
    let scores = metrics::compute_metric(gold_rels, pred_rels, metric)?;
    let mean_score = scores.values().sum::<f64>() / scores.len() as f64;
    Ok(Evaluated { scores, mean_score })
}

/// Extracts paired scores from two [`Evaluated`] results.
///
/// # Errors
///
/// * [`ElinorError::InvalidArgument`] if the two evaluated results have different sets of queries.
pub fn paired_scores_from_evaluated<K>(
    a: &Evaluated<K>,
    b: &Evaluated<K>,
) -> Result<Vec<(f64, f64)>, ElinorError>
where
    K: Clone + Eq + Ord + std::hash::Hash + std::fmt::Display,
{
    let a = a.scores();
    let b = b.scores();
    if a.len() != b.len() {
        return Err(ElinorError::InvalidArgument(
            "The two evaluated results must have the same number of queries.".to_string(),
        ));
    }

    // Sort query ids to ensure the order of paired scores.
    let mut query_ids = a.keys().cloned().collect::<Vec<_>>();
    query_ids.sort_unstable();

    let mut paired_scores = vec![];
    for query_id in query_ids {
        let score_a = a.get(&query_id).unwrap();
        let score_b = b.get(&query_id).ok_or_else(|| {
            ElinorError::InvalidArgument(format!(
                "The query id {} is not found in the second evaluated result.",
                query_id
            ))
        })?;
        paired_scores.push((*score_a, *score_b));
    }
    Ok(paired_scores)
}

/// Extracts tupled scores from multiple [`Evaluated`] results.
///
/// # Errors
///
/// * [`ElinorError::InvalidArgument`] if the evaluated results have different sets of queries.
pub fn tupled_scores_from_evaluated<K>(
    evaluateds: &[Evaluated<K>],
) -> Result<Vec<Vec<f64>>, ElinorError>
where
    K: Clone + Eq + Ord + std::hash::Hash + std::fmt::Display,
{
    if evaluateds.len() < 2 {
        return Err(ElinorError::InvalidArgument(
            "The number of evaluated results must be at least 2.".to_string(),
        ));
    }

    let score_maps = evaluateds.iter().map(|e| e.scores()).collect::<Vec<_>>();
    for i in 1..score_maps.len() {
        if score_maps[i].len() != score_maps[0].len() {
            return Err(ElinorError::InvalidArgument(
                "The evaluated results must have the same number of queries.".to_string(),
            ));
        }
    }

    let mut query_ids = score_maps[0].keys().cloned().collect::<Vec<_>>();
    query_ids.sort_unstable();

    let mut tupled_scores = vec![];
    for query_id in query_ids {
        let mut scores = vec![];
        for score_map in &score_maps {
            if let Some(score) = score_map.get(&query_id) {
                scores.push(*score);
            } else {
                return Err(ElinorError::InvalidArgument(format!(
                    "The query id {} is not found in the evaluated results.",
                    query_id
                )));
            }
        }
        tupled_scores.push(scores);
    }
    Ok(tupled_scores)
}

#[cfg(test)]
mod tests {
    use super::*;
    use approx::assert_relative_eq;
    use maplit::hashmap;

    #[test]
    fn test_evaluate() {
        let mut b = GoldRelStoreBuilder::new();
        b.add_score("q_1", "d_1", 1).unwrap();
        b.add_score("q_1", "d_2", 0).unwrap();
        b.add_score("q_1", "d_3", 2).unwrap();
        b.add_score("q_2", "d_2", 2).unwrap();
        b.add_score("q_2", "d_4", 1).unwrap();
        let gold_rels = b.build();

        let mut b = PredRelStoreBuilder::new();
        b.add_score("q_1", "d_1", 0.5.into()).unwrap();
        b.add_score("q_1", "d_2", 0.4.into()).unwrap();
        b.add_score("q_1", "d_3", 0.3.into()).unwrap();
        b.add_score("q_2", "d_4", 0.1.into()).unwrap();
        b.add_score("q_2", "d_1", 0.2.into()).unwrap();
        b.add_score("q_2", "d_3", 0.3.into()).unwrap();
        let pred_rels = b.build();

        let evaluated = evaluate(&gold_rels, &pred_rels, Metric::Precision { k: 3 }).unwrap();
        assert_relative_eq!(evaluated.mean_score(), (2. / 3. + 1. / 3.) / 2.);

        let scores = evaluated.scores();
        assert_eq!(scores.len(), 2);
        assert_relative_eq!(scores["q_1"], 2. / 3.);
        assert_relative_eq!(scores["q_2"], 1. / 3.);
    }

    #[test]
    fn test_paired_scores_from_evaluated() {
        let evaluated_a = Evaluated {
            scores: hashmap! {
                "q_1" => 2.,
                "q_2" => 5.,
            },
            mean_score: 3.5,
        };
        let evaluated_b = Evaluated {
            scores: hashmap! {
                "q_1" => 1.,
                "q_2" => 0.,
            },
            mean_score: 0.5,
        };
        let paired_scores = paired_scores_from_evaluated(&evaluated_a, &evaluated_b).unwrap();
        assert_eq!(paired_scores, vec![(2., 1.), (5., 0.)]);
    }

    #[test]
    fn test_paired_scores_from_evaluated_different_n_queries() {
        let evaluated_a = Evaluated {
            scores: hashmap! {
                "q_1" => 2.,
                "q_2" => 5.,
            },
            mean_score: 3.5,
        };
        let evaluated_b = Evaluated {
            scores: hashmap! {
                "q_1" => 1.,
            },
            mean_score: 1.0,
        };
        let result = paired_scores_from_evaluated(&evaluated_a, &evaluated_b);
        assert_eq!(
            result.unwrap_err(),
            ElinorError::InvalidArgument(
                "The two evaluated results must have the same number of queries.".to_string()
            )
        );
    }

    #[test]
    fn test_paired_scores_from_evaluated_missing_query_id() {
        let evaluated_a = Evaluated {
            scores: hashmap! {
                "q_1" => 2.,
                "q_2" => 5.,
            },
            mean_score: 3.5,
        };
        let evaluated_b = Evaluated {
            scores: hashmap! {
                "q_1" => 1.,
                "q_3" => 0.,
            },
            mean_score: 0.5,
        };
        let result = paired_scores_from_evaluated(&evaluated_a, &evaluated_b);
        assert_eq!(
            result.unwrap_err(),
            ElinorError::InvalidArgument(
                "The query id q_2 is not found in the second evaluated result.".to_string()
            )
        );
    }

    #[test]
    fn test_tupled_scores_from_evaluated() {
        let evaluated_a = Evaluated {
            scores: hashmap! {
                "q_1" => 2.,
                "q_2" => 5.,
            },
            mean_score: 3.5,
        };
        let evaluated_b = Evaluated {
            scores: hashmap! {
                "q_1" => 1.,
                "q_2" => 0.,
            },
            mean_score: 0.5,
        };
        let evaluated_c = Evaluated {
            scores: hashmap! {
                "q_1" => 2.,
                "q_2" => 1.,
            },
            mean_score: 1.5,
        };
        let tupled_scores =
            tupled_scores_from_evaluated(&[evaluated_a, evaluated_b, evaluated_c]).unwrap();
        assert_eq!(tupled_scores, vec![vec![2., 1., 2.], vec![5., 0., 1.]]);
    }
}