Crate elinor

Source
Expand description

Elinor (Evaluation library in information retrieval) is a library for evaluating information retrieval (IR) systems. It provides a comprehensive set of metrics and statistical tests for evaluating and comparing IR systems.

§Key features

  • IR-specific design: Elinor is tailored specifically for evaluating IR systems, with an intuitive interface designed for IR engineers. It offers a streamlined workflow that simplifies common IR evaluation tasks.
  • Comprehensive evaluation metrics: Elinor supports a wide range of key evaluation metrics, such as Precision, MAP, MRR, and nDCG. The supported metrics are available in Metric. The evaluation results are validated against trec_eval to ensure accuracy and reliability.
  • In-depth statistical testing: Elinor includes several statistical tests, such as Student’s t-test, Bootstrap test, and Randomized Tukey HSD test. Not only p-values but also other important statistics, such as effect sizes and confidence intervals, are provided for thorough reporting. See the statistical_tests module for more details.

§Ubiquitous language

Elinor uses the following terms for convenience:

  • True relevance score means the relevance judgment provided by human assessors.
  • Predicted relevance score means the similarity score predicted by the system.

§Basic usage in evaluating several metrics

You first need to prepare true and predicted relevance scores for evaluation. These scores are stored in instances of TrueRelStore and PredRelStore, respectively. You can build these instances using TrueRelStoreBuilder and PredRelStoreBuilder.

Then, you can evaluate the predicted relevance scores using the evaluate function and the specified metric. The available metrics are defined in the Metric enum.

An example to evaluate Precision@3, MAP, MRR, and nDCG@3 is shown below:

use approx::assert_abs_diff_eq;
use elinor::{TrueRelStoreBuilder, PredRelStoreBuilder, Metric};

// Prepare true relevance scores.
// In binary-relevance metrics, 0 means non-relevant and the others mean relevant.
let mut b = TrueRelStoreBuilder::new();
b.add_record("q_1", "d_1", 1)?;
b.add_record("q_1", "d_2", 0)?;
b.add_record("q_1", "d_3", 2)?;
b.add_record("q_2", "d_2", 2)?;
b.add_record("q_2", "d_4", 1)?;
let true_rels = b.build();

// Prepare predicted relevance scores.
let mut b = PredRelStoreBuilder::new();
b.add_record("q_1", "d_1", 0.5.into())?;
b.add_record("q_1", "d_2", 0.4.into())?;
b.add_record("q_1", "d_3", 0.3.into())?;
b.add_record("q_2", "d_4", 0.1.into())?;
b.add_record("q_2", "d_1", 0.2.into())?;
b.add_record("q_2", "d_3", 0.3.into())?;
let pred_rels = b.build();

// Evaluate Precision@3.
let result = elinor::evaluate(&true_rels, &pred_rels, Metric::Precision { k: 3 })?;
assert_abs_diff_eq!(result.mean(), 0.5000, epsilon = 1e-4);

// Evaluate MAP, where all documents are considered via k=0.
let result = elinor::evaluate(&true_rels, &pred_rels, Metric::AP { k: 0 })?;
assert_abs_diff_eq!(result.mean(), 0.5000, epsilon = 1e-4);

// Evaluate MRR, where the metric is specified via a string representation.
let result = elinor::evaluate(&true_rels, &pred_rels, "rr".parse()?)?;
assert_abs_diff_eq!(result.mean(), 0.6667, epsilon = 1e-4);

// Evaluate nDCG@3, where the metric is specified via a string representation.
let result = elinor::evaluate(&true_rels, &pred_rels, "ndcg@3".parse()?)?;
assert_abs_diff_eq!(result.mean(), 0.4751, epsilon = 1e-4);

§Statistical tests for comparing two systems

The statistical_tests module provides various statistical tests for comparing systems.

The example shows how to perform Student’s t-test for Precision scores between two systems. Not only the p-value but also various statistics, such as variance and effect size, are provided for thorough reporting.

use approx::assert_relative_eq;
use elinor::{TrueRelStoreBuilder, PredRelStoreBuilder, Metric};
use elinor::statistical_tests::{StudentTTest, pairs_from_maps};

// Prepare true relevance scores.
let mut b = TrueRelStoreBuilder::new();
b.add_record("q_1", "d_1", 1)?;
b.add_record("q_1", "d_2", 1)?;
b.add_record("q_2", "d_1", 1)?;
b.add_record("q_2", "d_2", 1)?;
let true_rels = b.build();

// Prepare predicted relevance scores for system A.
let mut b = PredRelStoreBuilder::new();
b.add_record("q_1", "d_1", 0.2.into())?;
b.add_record("q_1", "d_2", 0.1.into())?;
b.add_record("q_2", "d_1", 0.2.into())?;
b.add_record("q_2", "d_2", 0.1.into())?;
let pred_rels_a = b.build();

// Prepare predicted relevance scores for system B.
let mut b = PredRelStoreBuilder::new();
b.add_record("q_1", "d_3", 0.2.into())?;
b.add_record("q_1", "d_2", 0.1.into())?;
b.add_record("q_2", "d_3", 0.2.into())?;
let pred_rels_b = b.build();

// Evaluate Precision for both systems.
let metric = Metric::Precision { k: 0 };
let result_a = elinor::evaluate(&true_rels, &pred_rels_a, metric)?;
let result_b = elinor::evaluate(&true_rels, &pred_rels_b, metric)?;

// Perform two-sided paired Student's t-test.
let pairs = pairs_from_maps(result_a.scores(), result_b.scores())?;
let stat = StudentTTest::from_paired_samples(pairs)?;

// Various statistics can be obtained from the t-test result.
assert!(stat.mean() > 0.0);
assert!(stat.variance() > 0.0);
assert!(stat.effect_size() > 0.0);
assert!(stat.t_stat() > 0.0);
assert!((0.0..=1.0).contains(&stat.p_value()));

// Margin of error at a 95% confidence level.
let moe95 = stat.margin_of_error(0.05)?;
assert!(moe95 > 0.0);

// Confidence interval at a 95% confidence level.
let (ci95_btm, ci95_top) = stat.confidence_interval(0.05)?;
assert_relative_eq!(ci95_btm, stat.mean() - moe95);
assert_relative_eq!(ci95_top, stat.mean() + moe95);

§Statistical tests for comparing three or more systems

When comparing three or more systems, you can use Tukey HSD test and Randomized Tukey HSD test.

An example to compare Precision scores among three systems is shown below:

use elinor::{TrueRelStoreBuilder, PredRelStoreBuilder, Metric};
use elinor::statistical_tests::{RandomizedTukeyHsdTest, TukeyHsdTest, tuples_from_maps};

// Prepare true relevance scores.
let mut b = TrueRelStoreBuilder::new();
b.add_record("q_1", "d_1", 1)?;
b.add_record("q_1", "d_2", 1)?;
b.add_record("q_2", "d_1", 1)?;
b.add_record("q_2", "d_2", 1)?;
let true_rels = b.build();

// Prepare predicted relevance scores for system A.
let mut b = PredRelStoreBuilder::new();
b.add_record("q_1", "d_1", 0.2.into())?;
b.add_record("q_1", "d_2", 0.1.into())?;
b.add_record("q_2", "d_1", 0.2.into())?;
b.add_record("q_2", "d_2", 0.1.into())?;
let pred_rels_a = b.build();

// Prepare predicted relevance scores for system B.
let mut b = PredRelStoreBuilder::new();
b.add_record("q_1", "d_3", 0.2.into())?;
b.add_record("q_1", "d_2", 0.1.into())?;
b.add_record("q_2", "d_3", 0.2.into())?;
let pred_rels_b = b.build();

// Prepare predicted relevance scores for system C.
let mut b = PredRelStoreBuilder::new();
b.add_record("q_1", "d_1", 0.2.into())?;
b.add_record("q_2", "d_2", 0.1.into())?;
b.add_record("q_2", "d_4", 0.2.into())?;
let pred_rels_c = b.build();

// Evaluate Precision for all systems.
let metric = Metric::Precision { k: 0 };
let result_a = elinor::evaluate(&true_rels, &pred_rels_a, metric)?;
let result_b = elinor::evaluate(&true_rels, &pred_rels_b, metric)?;
let result_c = elinor::evaluate(&true_rels, &pred_rels_c, metric)?;

// Prepare tupled scores for tests.
let tupled_scores = tuples_from_maps([result_a.scores(), result_b.scores(), result_c.scores()])?;

// Perform Tukey HSD test with paired observations.
let hsd_stat = TukeyHsdTest::from_tupled_samples(tupled_scores.iter(), 3)?;
let effect_sizes = hsd_stat.effect_sizes();

// Perform randomized Tukey HSD test.
let hsd_stat = RandomizedTukeyHsdTest::from_tupled_samples(tupled_scores.iter(), 3)?;
let p_values = hsd_stat.p_values();

§Instantiating relevance stores with Serde

TrueRelStore and PredRelStore can be instantiated from TrueRecord and PredRecord instances, respectively, where each record consists of three fields: query_id, document_id, and score.

Both TrueRecord and PredRecord support serialization and deserialization via Serde, allowing you to easily instantiate relevance stores from JSON or other formats.

If you use Serde, enable the serde feature in the Cargo.toml:

[dependencies]
elinor = { version = "*", features = ["serde"] }

An example to instantiate relevance stores from JSONL strings is shown below:

use elinor::{TrueRelStore, TrueRecord, PredRelStore, PredRecord};

let true_data = r#"
{"query_id": "q_1", "doc_id": "d_1", "score": 1}
{"query_id": "q_1", "doc_id": "d_2", "score": 0}
{"query_id": "q_1", "doc_id": "d_3", "score": 2}
{"query_id": "q_2", "doc_id": "d_2", "score": 2}
{"query_id": "q_2", "doc_id": "d_4", "score": 1}
"#.trim();

let pred_data = r#"
{"query_id": "q_1", "doc_id": "d_1", "score": 0.5}
{"query_id": "q_1", "doc_id": "d_2", "score": 0.4}
{"query_id": "q_1", "doc_id": "d_3", "score": 0.3}
{"query_id": "q_2", "doc_id": "d_4", "score": 0.1}
{"query_id": "q_2", "doc_id": "d_1", "score": 0.2}
{"query_id": "q_2", "doc_id": "d_3", "score": 0.3}
"#.trim();

let true_records = true_data
    .lines()
    .map(|line| serde_json::from_str::<TrueRecord<String>>(line).unwrap());
let pred_records = pred_data
    .lines()
    .map(|line| serde_json::from_str::<PredRecord<String>>(line).unwrap());

let true_rels = TrueRelStore::from_records(true_records)?;
let pred_rels = PredRelStore::from_records(pred_records)?;

assert_eq!(true_rels.n_queries(), 2);
assert_eq!(true_rels.n_docs(), 5);
assert_eq!(pred_rels.n_queries(), 2);
assert_eq!(pred_rels.n_docs(), 6);

§Crate features

§Acknowledgments

This library is inspired by Sakai’s books on IR evaluation and statistical testing:

I recommend reading these books before using this library.

Re-exports§

pub use errors::ElinorError;
pub use errors::Result;
pub use metrics::Metric;
pub use relevance::Record;
pub use relevance::Relevance;

Modules§

errors
Error handling for Elinor.
metrics
Metrics for evaluating information retrieval systems.
relevance
Data structures for storing relevance scores.
statistical_tests
Statistical tests.
trec
TREC format parser.

Structs§

Evaluation
Struct to store evaluated results.

Functions§

evaluate
Evaluates the given predicted relevance scores against the true relevance scores.

Type Aliases§

PredRecord
Record type to store a predicted relevance score.
PredRelStore
Data structure to store predicted relevance scores.
PredRelStoreBuilder
Builder for PredRelStore.
PredScore
Data type to store a predicted relevance score. A higher score means more relevant.
TrueRecord
Record type to store a true relevance score.
TrueRelStore
Data structure to store true relevance scores.
TrueRelStoreBuilder
Builder for TrueRelStore.
TrueScore
Data type to store a true relevance score. In binary relevance, 0 means non-relevant and the others mean relevant.