1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
// Written in 2020 by the rust-miniscript developers
// SPDX-License-Identifier: CC0-1.0
//! # Bare Output Descriptors
//!
//! Implementation of Bare Descriptors (i.e descriptors that are)
//! wrapped inside wsh, or sh fragments.
//! Also includes pk, and pkh descriptors
//!
use core::fmt;
use elements::{self, script, secp256k1_zkp, Script};
use super::checksum::verify_checksum;
use super::ELMTS_STR;
use crate::descriptor::checksum;
use crate::expression::{self, FromTree};
use crate::miniscript::context::ScriptContext;
use crate::policy::{semantic, Liftable};
use crate::util::{varint_len, witness_to_scriptsig};
use crate::{
    elementssig_to_rawsig, BareCtx, Error, ForEachKey, Miniscript, MiniscriptKey, Satisfier,
    ToPublicKey, TranslatePk, Translator,
};
/// Create a Bare Descriptor. That is descriptor that is
/// not wrapped in sh or wsh. This covers the Pk descriptor
#[derive(Clone, Ord, PartialOrd, Eq, PartialEq, Hash)]
pub struct Bare<Pk: MiniscriptKey> {
    /// underlying miniscript
    ms: Miniscript<Pk, BareCtx>,
}
impl<Pk: MiniscriptKey> Bare<Pk> {
    /// Create a new raw descriptor
    pub fn new(ms: Miniscript<Pk, BareCtx>) -> Result<Self, Error> {
        // do the top-level checks
        BareCtx::top_level_checks(&ms)?;
        Ok(Self { ms })
    }
    /// get the inner
    pub fn into_inner(self) -> Miniscript<Pk, BareCtx> {
        self.ms
    }
    /// get the inner
    pub fn as_inner(&self) -> &Miniscript<Pk, BareCtx> {
        &self.ms
    }
    /// Checks whether the descriptor is safe.
    pub fn sanity_check(&self) -> Result<(), Error> {
        self.ms.sanity_check()?;
        Ok(())
    }
    /// Computes an upper bound on the difference between a non-satisfied
    /// `TxIn`'s `segwit_weight` and a satisfied `TxIn`'s `segwit_weight`
    ///
    /// Since this method uses `segwit_weight` instead of `legacy_weight`,
    /// if you want to include only legacy inputs in your transaction,
    /// you should remove 1WU from each input's `max_weight_to_satisfy`
    /// for a more accurate estimate.
    ///
    /// Assumes all ECDSA signatures are 73 bytes, including push opcode and
    /// sighash suffix.
    ///
    /// # Errors
    /// When the descriptor is impossible to safisfy (ex: sh(OP_FALSE)).
    pub fn max_weight_to_satisfy(&self) -> Result<usize, Error> {
        let scriptsig_size = self.ms.max_satisfaction_size()?;
        // scriptSig varint difference between non-satisfied (0) and satisfied
        let scriptsig_varint_diff = varint_len(scriptsig_size) - varint_len(0);
        Ok(4 * (scriptsig_varint_diff + scriptsig_size))
    }
    /// Computes an upper bound on the weight of a satisfying witness to the
    /// transaction.
    ///
    /// Assumes all ec-signatures are 73 bytes, including push opcode and
    /// sighash suffix. Includes the weight of the VarInts encoding the
    /// scriptSig and witness stack length.
    ///
    /// # Errors
    /// When the descriptor is impossible to safisfy (ex: sh(OP_FALSE)).
    #[deprecated(note = "use max_weight_to_satisfy instead")]
    pub fn max_satisfaction_weight(&self) -> Result<usize, Error> {
        let scriptsig_len = self.ms.max_satisfaction_size()?;
        Ok(4 * (varint_len(scriptsig_len) + scriptsig_len))
    }
}
impl<Pk: MiniscriptKey + ToPublicKey> Bare<Pk> {
    /// Obtains the corresponding script pubkey for this descriptor.
    pub fn script_pubkey(&self) -> Script {
        self.ms.encode()
    }
    /// Obtains the underlying miniscript for this descriptor.
    pub fn inner_script(&self) -> Script {
        self.script_pubkey()
    }
    /// Obtains the pre bip-340 signature script code for this descriptor.
    pub fn ecdsa_sighash_script_code(&self) -> Script {
        self.script_pubkey()
    }
    /// Returns satisfying non-malleable witness and scriptSig with minimum
    /// weight to spend an output controlled by the given descriptor if it is
    /// possible to construct one using the `satisfier`.
    pub fn get_satisfaction<S>(&self, satisfier: S) -> Result<(Vec<Vec<u8>>, Script), Error>
    where
        S: Satisfier<Pk>,
    {
        let ms = self.ms.satisfy(satisfier)?;
        let script_sig = witness_to_scriptsig(&ms);
        let witness = vec![];
        Ok((witness, script_sig))
    }
    /// Returns satisfying, possibly malleable, witness and scriptSig with
    /// minimum weight to spend an output controlled by the given descriptor if
    /// it is possible to construct one using the `satisfier`.
    pub fn get_satisfaction_mall<S>(&self, satisfier: S) -> Result<(Vec<Vec<u8>>, Script), Error>
    where
        S: Satisfier<Pk>,
    {
        let ms = self.ms.satisfy_malleable(satisfier)?;
        let script_sig = witness_to_scriptsig(&ms);
        let witness = vec![];
        Ok((witness, script_sig))
    }
}
impl<Pk: MiniscriptKey> fmt::Debug for Bare<Pk> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}{:?}", ELMTS_STR, self.ms)
    }
}
impl<Pk: MiniscriptKey> fmt::Display for Bare<Pk> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        use fmt::Write;
        let mut wrapped_f = checksum::Formatter::new(f);
        write!(wrapped_f, "{}{}", ELMTS_STR, self.ms)?;
        wrapped_f.write_checksum_if_not_alt()
    }
}
impl<Pk: MiniscriptKey> Liftable<Pk> for Bare<Pk> {
    fn lift(&self) -> Result<semantic::Policy<Pk>, Error> {
        self.ms.lift()
    }
}
impl_from_tree!(
    Bare<Pk>,
    fn from_tree(top: &expression::Tree<'_>) -> Result<Self, Error> {
        // extra allocations to use the existing code as is.
        if top.name.starts_with("el") {
            let new_tree = expression::Tree {
                name: top.name.split_at(2).1,
                args: top.args.clone(),
            };
            let sub = Miniscript::<Pk, BareCtx>::from_tree(&new_tree)?;
            BareCtx::top_level_checks(&sub)?;
            Bare::new(sub)
        } else {
            Err(Error::Unexpected("Not an elements descriptor".to_string()))
        }
    }
);
impl_from_str!(
    Bare<Pk>,
    type Err = Error;,
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let desc_str = verify_checksum(s)?;
        let top = expression::Tree::from_str(&desc_str[2..])?;
        Self::from_tree(&top)
    }
);
impl<Pk: MiniscriptKey> ForEachKey<Pk> for Bare<Pk> {
    fn for_each_key<'a, F: FnMut(&'a Pk) -> bool>(&'a self, pred: F) -> bool
    where
        Pk: 'a,
    {
        self.ms.for_each_key(pred)
    }
}
impl<P: MiniscriptKey, Q: MiniscriptKey> TranslatePk<P, Q> for Bare<P> {
    type Output = Bare<Q>;
    fn translate_pk<T, E>(&self, t: &mut T) -> Result<Self::Output, E>
    where
        T: Translator<P, Q, E>,
    {
        Ok(Bare::new(self.ms.translate_pk(t)?).expect("Translation cannot fail inside Bare"))
    }
}
/// A bare PkH descriptor at top level
#[derive(Clone, Ord, PartialOrd, Eq, PartialEq, Hash)]
pub struct Pkh<Pk: MiniscriptKey> {
    /// underlying publickey
    pk: Pk,
}
impl<Pk: MiniscriptKey> Pkh<Pk> {
    /// Create a new Pkh descriptor
    pub fn new(pk: Pk) -> Self {
        // do the top-level checks
        Self { pk }
    }
    /// Get a reference to the inner key
    pub fn as_inner(&self) -> &Pk {
        &self.pk
    }
    /// Get the inner key
    pub fn into_inner(self) -> Pk {
        self.pk
    }
    /// Computes an upper bound on the difference between a non-satisfied
    /// `TxIn`'s `segwit_weight` and a satisfied `TxIn`'s `segwit_weight`
    ///
    /// Since this method uses `segwit_weight` instead of `legacy_weight`,
    /// if you want to include only legacy inputs in your transaction,
    /// you should remove 1WU from each input's `max_weight_to_satisfy`
    /// for a more accurate estimate.
    ///
    /// Assumes all ECDSA signatures are 73 bytes, including push opcode and
    /// sighash suffix.
    ///
    /// # Errors
    /// When the descriptor is impossible to safisfy (ex: sh(OP_FALSE)).
    pub fn max_weight_to_satisfy(&self) -> usize {
        // OP_72 + <sig(71)+sigHash(1)> + OP_33 + <pubkey>
        let scriptsig_size = 73 + BareCtx::pk_len(&self.pk);
        // scriptSig varint different between non-satisfied (0) and satisfied
        let scriptsig_varint_diff = varint_len(scriptsig_size) - varint_len(0);
        4 * (scriptsig_varint_diff + scriptsig_size)
    }
    /// Computes an upper bound on the weight of a satisfying witness to the
    /// transaction.
    ///
    /// Assumes all ec-signatures are 73 bytes, including push opcode and
    /// sighash suffix. Includes the weight of the VarInts encoding the
    /// scriptSig and witness stack length.
    pub fn max_satisfaction_weight(&self) -> usize {
        4 * (1 + 73 + BareCtx::pk_len(&self.pk))
    }
}
impl<Pk: MiniscriptKey + ToPublicKey> Pkh<Pk> {
    /// Obtains the corresponding script pubkey for this descriptor.
    pub fn script_pubkey(&self) -> Script {
        // Fine to hard code the `Network` here because we immediately call
        // `script_pubkey` which does not use the `network` field of `Address`.
        let addr = elements::Address::p2pkh(
            &self.pk.to_public_key(),
            None,
            &elements::AddressParams::ELEMENTS,
        );
        addr.script_pubkey()
    }
    /// Obtains the corresponding script pubkey for this descriptor.
    pub fn address(
        &self,
        blinder: Option<secp256k1_zkp::PublicKey>,
        params: &'static elements::address::AddressParams,
    ) -> elements::Address {
        elements::Address::p2pkh(&self.pk.to_public_key(), blinder, params)
    }
    /// Obtains the underlying miniscript for this descriptor.
    pub fn inner_script(&self) -> Script {
        self.script_pubkey()
    }
    /// Obtains the pre bip-340 signature script code for this descriptor.
    pub fn ecdsa_sighash_script_code(&self) -> Script {
        self.script_pubkey()
    }
    /// Returns satisfying non-malleable witness and scriptSig with minimum
    /// weight to spend an output controlled by the given descriptor if it is
    /// possible to construct one using the `satisfier`.
    pub fn get_satisfaction<S>(&self, satisfier: S) -> Result<(Vec<Vec<u8>>, Script), Error>
    where
        S: Satisfier<Pk>,
    {
        if let Some(sig) = satisfier.lookup_ecdsa_sig(&self.pk) {
            let sig_vec = elementssig_to_rawsig(&sig);
            let script_sig = script::Builder::new()
                .push_slice(&sig_vec[..])
                .push_key(&self.pk.to_public_key())
                .into_script();
            let witness = vec![];
            Ok((witness, script_sig))
        } else {
            Err(Error::MissingSig(self.pk.to_public_key()))
        }
    }
    /// Returns satisfying, possibly malleable, witness and scriptSig with
    /// minimum weight to spend an output controlled by the given descriptor if
    /// it is possible to construct one using the `satisfier`.
    pub fn get_satisfaction_mall<S>(&self, satisfier: S) -> Result<(Vec<Vec<u8>>, Script), Error>
    where
        S: Satisfier<Pk>,
    {
        self.get_satisfaction(satisfier)
    }
}
impl<Pk: MiniscriptKey> fmt::Debug for Pkh<Pk> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}pkh({:?})", ELMTS_STR, self.pk)
    }
}
impl<Pk: MiniscriptKey> fmt::Display for Pkh<Pk> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        use fmt::Write;
        let mut wrapped_f = checksum::Formatter::new(f);
        write!(wrapped_f, "{}pkh({})", ELMTS_STR, self.pk)?;
        wrapped_f.write_checksum_if_not_alt()
    }
}
impl<Pk: MiniscriptKey> Liftable<Pk> for Pkh<Pk> {
    fn lift(&self) -> Result<semantic::Policy<Pk>, Error> {
        Ok(semantic::Policy::Key(self.pk.clone()))
    }
}
impl_from_tree!(
    Pkh<Pk>,
    fn from_tree(top: &expression::Tree) -> Result<Self, Error> {
        if top.name == "elpkh" && top.args.len() == 1 {
            Ok(Pkh::new(expression::terminal(&top.args[0], |pk| {
                Pk::from_str(pk)
            })?))
        } else {
            Err(Error::Unexpected(format!(
                "{}({} args) while parsing pkh descriptor",
                top.name,
                top.args.len(),
            )))
        }
    }
);
impl_from_str!(
    Pkh<Pk>,
    type Err = Error;,
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let desc_str = verify_checksum(s)?;
        let top = expression::Tree::from_str(desc_str)?;
        Self::from_tree(&top)
    }
);
impl<Pk: MiniscriptKey> ForEachKey<Pk> for Pkh<Pk> {
    fn for_each_key<'a, F: FnMut(&'a Pk) -> bool>(&'a self, mut pred: F) -> bool
    where
        Pk: 'a,
    {
        pred(&self.pk)
    }
}
impl<P: MiniscriptKey, Q: MiniscriptKey> TranslatePk<P, Q> for Pkh<P> {
    type Output = Pkh<Q>;
    fn translate_pk<T, E>(&self, t: &mut T) -> Result<Self::Output, E>
    where
        T: Translator<P, Q, E>,
    {
        Ok(Pkh::new(t.pk(&self.pk)?))
    }
}