1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
//! A k-nearest neighbor (kNN) search finds the k nearest vectors to a query vector, as measured by a similarity metric.
//!
//! Common use cases for kNN include:
//! - Relevance ranking based on natural language processing (NLP) algorithms
//! - Product recommendations and recommendation engines
//! - Similarity search for images or videos
//!
//! <https://www.elastic.co/guide/en/elasticsearch/reference/current/knn-search.html#approximate-knn>
use crate::search::*;
use crate::util::*;
use serde::Serialize;
/// Performs a k-nearest neighbor (kNN) search and returns the matching documents.
///
/// The kNN search API performs a k-nearest neighbor (kNN) search on a `dense_vector` field. Given a query vector, it
/// finds the _k_ closest vectors and returns those documents as search hits.
///
/// Elasticsearch uses the HNSW algorithm to support efficient kNN search. Like most kNN algorithms, HNSW is an
/// approximate method that sacrifices result accuracy for improved search speed. This means the results returned are
/// not always the true _k_ closest neighbors.
///
/// The kNN search API supports restricting the search using a filter. The search will return the top `k` documents
/// that also match the filter query.
///
/// To create a knn search with a query vector or query vector builder:
/// ```
/// # use elasticsearch_dsl::*;
/// # let search =
/// Search::new()
/// .knn(Knn::query_vector("test1", vec![1.0, 2.0, 3.0]))
/// .knn(Knn::query_vector_builder("test3", TextEmbedding::new("my-text-embedding-model", "The opposite of pink")));
/// ```
/// <https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-knn-query.html>
#[derive(Debug, Clone, PartialEq, Serialize)]
pub struct Knn {
field: String,
#[serde(skip_serializing_if = "ShouldSkip::should_skip")]
query_vector: Option<Vec<f32>>,
#[serde(skip_serializing_if = "ShouldSkip::should_skip")]
query_vector_builder: Option<QueryVectorBuilder>,
#[serde(skip_serializing_if = "ShouldSkip::should_skip")]
k: Option<u32>,
#[serde(skip_serializing_if = "ShouldSkip::should_skip")]
num_candidates: Option<u32>,
#[serde(skip_serializing_if = "ShouldSkip::should_skip")]
filter: Option<Box<Query>>,
#[serde(skip_serializing_if = "ShouldSkip::should_skip")]
similarity: Option<f32>,
#[serde(skip_serializing_if = "ShouldSkip::should_skip")]
boost: Option<f32>,
#[serde(skip_serializing_if = "ShouldSkip::should_skip")]
_name: Option<String>,
}
impl Knn {
/// Creates an instance of [`Knn`] search with query vector
///
/// - `field` - The name of the vector field to search against. Must be a dense_vector field with indexing enabled.
/// - `query_vector` - Query vector. Must have the same number of dimensions as the vector field you are searching
/// against.
pub fn query_vector<T>(field: T, query_vector: Vec<f32>) -> Self
where
T: ToString,
{
Self {
field: field.to_string(),
query_vector: Some(query_vector),
query_vector_builder: None,
k: None,
num_candidates: None,
filter: None,
similarity: None,
boost: None,
_name: None,
}
}
/// Creates an instance of [`Knn`] search with query vector builder
///
/// - `field` - The name of the vector field to search against. Must be a dense_vector field with indexing enabled.
/// - `query_vector_builder` - A configuration object indicating how to build a query_vector before executing the request.
pub fn query_vector_builder<T, U>(field: T, query_vector_builder: U) -> Self
where
T: ToString,
U: Into<QueryVectorBuilder>,
{
Self {
field: field.to_string(),
query_vector: None,
query_vector_builder: Some(query_vector_builder.into()),
k: None,
num_candidates: None,
filter: None,
similarity: None,
boost: None,
_name: None,
}
}
/// Number of nearest neighbors to return as top hits. This value must be less than `num_candidates`.
///
/// Defaults to `size`.
pub fn k(mut self, k: u32) -> Self {
self.k = Some(k);
self
}
/// The number of nearest neighbor candidates to consider per shard. Cannot exceed 10,000. Elasticsearch collects
/// `num_candidates` results from each shard, then merges them to find the top results. Increasing `num_candidates`
/// tends to improve the accuracy of the final results. Defaults to `Math.min(1.5 * size, 10_000)`.
pub fn num_candidates(mut self, num_candidates: u32) -> Self {
self.num_candidates = Some(num_candidates);
self
}
/// Query to filter the documents that can match. The kNN search will return the top documents that also match
/// this filter. The value can be a single query or a list of queries. If `filter` is not provided, all documents
/// are allowed to match.
///
/// The filter is a pre-filter, meaning that it is applied **during** the approximate kNN search to ensure that
/// `num_candidates` matching documents are returned.
pub fn filter<T>(mut self, filter: T) -> Self
where
T: Into<Query>,
{
self.filter = Some(Box::new(filter.into()));
self
}
/// The minimum similarity required for a document to be considered a match. The similarity value calculated
/// relates to the raw similarity used. Not the document score. The matched documents are then scored according
/// to similarity and the provided boost is applied.
pub fn similarity(mut self, similarity: f32) -> Self {
self.similarity = Some(similarity);
self
}
add_boost_and_name!();
}
/// A configuration object indicating how to build a query_vector before executing the request.
///
/// Currently, the only supported builder is [`TextEmbedding`].
///
/// <https://www.elastic.co/guide/en/elasticsearch/reference/8.13/knn-search.html#knn-semantic-search>
#[derive(Debug, Clone, PartialEq, Serialize)]
#[serde(rename_all = "snake_case")]
pub enum QueryVectorBuilder {
/// The natural language processing task to perform.
TextEmbedding(TextEmbedding),
}
/// The natural language processing task to perform.
#[derive(Debug, Clone, PartialEq, Serialize)]
pub struct TextEmbedding {
model_id: String,
model_text: String,
}
impl From<TextEmbedding> for QueryVectorBuilder {
fn from(embedding: TextEmbedding) -> Self {
Self::TextEmbedding(embedding)
}
}
impl TextEmbedding {
/// Creates an instance of [`TextEmbedding`]
/// - `model_id` - The ID of the text embedding model to use to generate the dense vectors from the query string.
/// Use the same model that generated the embeddings from the input text in the index you search against. You can
/// use the value of the deployment_id instead in the model_id argument.
/// - `model_text` - The query string from which the model generates the dense vector representation.
pub fn new<T, U>(model_id: T, model_text: U) -> Self
where
T: ToString,
U: ToString,
{
Self {
model_id: model_id.to_string(),
model_text: model_text.to_string(),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn serialization() {
assert_serialize(
Search::new()
.knn(Knn::query_vector("test1", vec![1.0, 2.0, 3.0]))
.knn(
Knn::query_vector("test2", vec![4.0, 5.0, 6.0])
.k(3)
.num_candidates(100)
.filter(Query::term("field", "value"))
.similarity(0.5)
.boost(2.0)
.name("test2"),
)
.knn(Knn::query_vector_builder(
"test3",
TextEmbedding::new("my-text-embedding-model", "The opposite of pink"),
))
.knn(
Knn::query_vector_builder(
"test4",
TextEmbedding::new("my-text-embedding-model", "The opposite of blue"),
)
.k(5)
.num_candidates(200)
.filter(Query::term("field", "value"))
.similarity(0.7)
.boost(2.1)
.name("test4"),
),
json!({
"knn": [
{
"field": "test1",
"query_vector": [1.0, 2.0, 3.0]
},
{
"field": "test2",
"query_vector": [4.0, 5.0, 6.0],
"k": 3,
"num_candidates": 100,
"filter": {
"term": {
"field": {
"value": "value"
}
}
},
"similarity": 0.5,
"boost": 2.0,
"_name": "test2"
},
{
"field": "test3",
"query_vector_builder": {
"text_embedding": {
"model_id": "my-text-embedding-model",
"model_text": "The opposite of pink"
}
}
},
{
"field": "test4",
"query_vector_builder": {
"text_embedding": {
"model_id": "my-text-embedding-model",
"model_text": "The opposite of blue"
}
},
"k": 5,
"num_candidates": 200,
"filter": {
"term": {
"field": {
"value": "value"
}
}
},
"similarity": 0.7,
"boost": 2.1,
"_name": "test4"
}
]
}),
);
}
}