1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
use crate::search::*;
use crate::util::*;
/// The More Like This Query finds documents that are "like" a given set of documents.
/// In order to do so, MLT selects a set of representative terms of these input documents,
/// forms a query using these terms, executes the query and returns the results.
/// The user controls the input documents, how the terms should be selected and how the query is formed.
///
/// The simplest use case consists of asking for documents that are similar to a provided piece of text.
/// Here, we are asking for all movies that have some text similar to "Once upon a time"
/// in their "title" and in their "description" fields, limiting the number of selected terms to 12.
///
/// A more complicated use case consists of mixing texts with documents already existing in the index.
/// In this case, the syntax to specify a document is similar to the one used in the
/// [Multi GET API](https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-multi-get.html).
///
/// Finally, users can mix some texts, a chosen set of documents but also provide documents not necessarily present in the index.
/// To provide documents not present in the index, the syntax is similar to
/// [artificial documents](https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-termvectors.html#docs-termvectors-artificial-doc).
///
/// **How it Works**
/// Suppose we wanted to find all documents similar to a given input document. Obviously, the input document
/// itself should be its best match for that type of query. And the reason would be mostly,
/// according to [Lucene scoring formula](https://lucene.apache.org/core/4_9_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html),
/// due to the terms with the highest tf-idf. Therefore, the terms of the input document that have the highest
/// tf-idf are good representatives of that document, and could be used within a disjunctive query (or OR) to retrieve similar documents.
/// The MLT query simply extracts the text from the input document, analyzes it, usually using the same analyzer at the field,
/// then selects the top K terms with highest tf-idf to form a disjunctive query of these terms.
///
/// To create a `more_like_this` query with `like` as a string on title field:
/// ```
/// # use elasticsearch_dsl::queries::*;
/// # use elasticsearch_dsl::queries::params::*;
/// # let query =
/// Query::more_like_this(["test"])
/// .fields(["title"]);
/// ```
/// To create a `more_like_this` query with string and document id fields on title and description with optional fields:
/// ```
/// # use elasticsearch_dsl::queries::*;
/// # use elasticsearch_dsl::queries::params::*;
/// # let query =
/// Query::more_like_this([Like::from(Document::new("123")), Like::from("test")])
/// .fields(["title", "description"])
/// .min_term_freq(1)
/// .max_query_terms(12)
/// .boost(1.2)
/// .name("more_like_this");
/// ```
/// <https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-mlt-query.html>
#[derive(Debug, Clone, PartialEq, Serialize)]
#[serde(remote = "Self")]
pub struct MoreLikeThisQuery {
#[serde(skip_serializing_if = "ShouldSkip::should_skip")]
fields: Option<Vec<String>>,
like: Vec<Like>,
#[serde(skip_serializing_if = "ShouldSkip::should_skip")]
unlike: Option<Vec<Like>>,
#[serde(skip_serializing_if = "ShouldSkip::should_skip")]
min_term_freq: Option<i64>,
#[serde(skip_serializing_if = "ShouldSkip::should_skip")]
max_query_terms: Option<i64>,
#[serde(skip_serializing_if = "ShouldSkip::should_skip")]
min_doc_freq: Option<i64>,
#[serde(skip_serializing_if = "ShouldSkip::should_skip")]
max_doc_freq: Option<i64>,
#[serde(skip_serializing_if = "ShouldSkip::should_skip")]
min_word_length: Option<i64>,
#[serde(skip_serializing_if = "ShouldSkip::should_skip")]
max_word_length: Option<i64>,
#[serde(skip_serializing_if = "ShouldSkip::should_skip")]
stop_words: Option<Vec<String>>,
#[serde(skip_serializing_if = "ShouldSkip::should_skip")]
analyzer: Option<String>,
#[serde(skip_serializing_if = "ShouldSkip::should_skip")]
minimum_should_match: Option<String>,
#[serde(skip_serializing_if = "ShouldSkip::should_skip")]
fail_on_unsupported_field: Option<bool>,
#[serde(skip_serializing_if = "ShouldSkip::should_skip")]
boost_terms: Option<f64>,
#[serde(skip_serializing_if = "ShouldSkip::should_skip")]
include: Option<bool>,
#[serde(skip_serializing_if = "ShouldSkip::should_skip")]
boost: Option<f32>,
#[serde(skip_serializing_if = "ShouldSkip::should_skip")]
_name: Option<String>,
}
/// Types for `like` and `unlike` fields
#[derive(Debug, Clone, PartialEq, Eq, Serialize)]
#[serde(untagged)]
pub enum Like {
/// String/text which will be used in `like` field array
String(String),
/// Struct to describe elasticsearch document which will be used in `like` field array
Document(Document),
}
impl From<String> for Like {
fn from(value: String) -> Self {
Self::String(value)
}
}
impl<'a> From<&'a str> for Like {
fn from(value: &'a str) -> Self {
Self::String(value.into())
}
}
impl From<Document> for Like {
fn from(value: Document) -> Self {
Self::Document(value)
}
}
/// One of `like` and `unlike` types which has like document structure
#[derive(Debug, Clone, PartialEq, Eq, Serialize)]
pub struct Document {
_id: String,
#[serde(skip_serializing_if = "ShouldSkip::should_skip")]
_index: Option<String>,
#[serde(skip_serializing_if = "ShouldSkip::should_skip")]
_routing: Option<String>,
#[serde(skip_serializing_if = "ShouldSkip::should_skip")]
_source: Option<SourceFilter>,
#[serde(skip_serializing_if = "ShouldSkip::should_skip")]
_stored_fields: StoredFields,
}
impl Document {
/// Creates an instance of [Document](Document)
///
/// - `id` - document id as string.
pub fn new<T>(id: T) -> Self
where
T: ToString,
{
Self {
_id: id.to_string(),
_stored_fields: Default::default(),
_index: None,
_routing: None,
_source: None,
}
}
/// The index that contains the document. Required if no index is specified in the request URI.
pub fn index<T>(mut self, index: T) -> Self
where
T: ToString,
{
self._index = Some(index.to_string());
self
}
/// The key for the primary shard the document resides on. Required if routing is used during indexing.
pub fn routing<T>(mut self, routing: T) -> Self
where
T: ToString,
{
self._routing = Some(routing.to_string());
self
}
/// If `false`, excludes all `_source` fields. Defaults to `true`.
pub fn source<T>(mut self, source: T) -> Self
where
T: Into<SourceFilter>,
{
self._source = Some(source.into());
self
}
/// The stored fields you want to retrieve.
pub fn stored_fields<T>(mut self, stored_fields: T) -> Self
where
T: Into<StoredFields>,
{
self._stored_fields = stored_fields.into();
self
}
}
impl Query {
/// Creates an instance of [`MoreLikeThisQuery`]
///
/// - `like` - free form text and/or a single or multiple documents.
pub fn more_like_this<I>(like: I) -> MoreLikeThisQuery
where
I: IntoIterator,
I::Item: Into<Like>,
{
MoreLikeThisQuery {
like: like.into_iter().map(Into::into).collect(),
fields: None,
unlike: None,
min_term_freq: None,
max_query_terms: None,
min_doc_freq: None,
max_doc_freq: None,
min_word_length: None,
max_word_length: None,
stop_words: None,
analyzer: None,
minimum_should_match: None,
fail_on_unsupported_field: None,
boost_terms: None,
include: None,
boost: None,
_name: None,
}
}
}
impl MoreLikeThisQuery {
/// A list of fields to fetch and analyze the text from.
/// Defaults to the index.query.default_field index setting, which has a default value of *.
/// The * value matches all fields eligible for `term-level queries`, excluding metadata fields.
pub fn fields<I>(mut self, fields: I) -> Self
where
I: IntoIterator,
I::Item: ToString,
{
self.fields = Some(fields.into_iter().map(|x| x.to_string()).collect());
self
}
/// The unlike parameter is used in conjunction with like in order not to select terms found in a chosen set of documents.
/// In other words, we could ask for documents like: "Apple", but unlike: "cake crumble tree". The syntax is the same as like.
pub fn unlike<I>(mut self, unlike: I) -> Self
where
I: IntoIterator,
I::Item: Into<Like>,
{
self.unlike = Some(unlike.into_iter().map(Into::into).collect());
self
}
/// The maximum number of query terms that will be selected.
/// Increasing this value gives greater accuracy at the expense of query execution speed.
/// Defaults to 25.
pub fn max_query_terms(mut self, max_query_terms: i64) -> Self {
self.max_query_terms = Some(max_query_terms);
self
}
/// The minimum term frequency below which the terms will be ignored from the input document.
/// Defaults to 2.
pub fn min_term_freq(mut self, min_term_freq: i64) -> Self {
self.min_term_freq = Some(min_term_freq);
self
}
/// The minimum document frequency below which the terms will be ignored from the input document.
/// Defaults to 5.
pub fn min_doc_freq(mut self, min_doc_freq: i64) -> Self {
self.min_doc_freq = Some(min_doc_freq);
self
}
/// The maximum document frequency above which the terms will be ignored from the input document.
/// This could be useful in order to ignore highly frequent words such as stop words.
/// Defaults to unbounded (Integer.MAX_VALUE, which is 2^31-1 or 2147483647).
pub fn max_doc_freq(mut self, max_doc_freq: i64) -> Self {
self.max_doc_freq = Some(max_doc_freq);
self
}
/// The minimum word length below which the terms will be ignored. Defaults to 0.
pub fn min_word_length(mut self, min_word_length: i64) -> Self {
self.min_word_length = Some(min_word_length);
self
}
/// The maximum word length above which the terms will be ignored. Defaults to unbounded (0).
pub fn max_word_length(mut self, max_word_length: i64) -> Self {
self.max_word_length = Some(max_word_length);
self
}
/// An array of stop words. Any word in this set is considered "uninteresting" and ignored.
/// If the analyzer allows for stop words, you might want to tell MLT to explicitly ignore them,
/// as for the purposes of document similarity it seems reasonable to assume that "a stop word is never interesting".
pub fn stop_words<T>(mut self, stop_words: T) -> Self
where
T: IntoIterator,
T::Item: ToString,
{
self.stop_words = Some(stop_words.into_iter().map(|x| x.to_string()).collect());
self
}
/// The analyzer that is used to analyze the free form text.
/// Defaults to the analyzer associated with the first field in `fields`.
pub fn analyzer<T>(mut self, analyzer: T) -> Self
where
T: ToString,
{
self.analyzer = Some(analyzer.to_string());
self
}
/// After the disjunctive query has been formed, this parameter controls the number of terms that must match.
/// The syntax is the same as the `minimum should match`. (Defaults to "30%").
pub fn minimum_should_match<T>(mut self, minimum_should_match: T) -> Self
where
T: ToString,
{
self.minimum_should_match = Some(minimum_should_match.to_string());
self
}
/// Controls whether the query should fail (throw an exception) if any of the specified fields are not of the supported types (text or keyword).
/// Set this to false to ignore the field and continue processing. Defaults to true.
pub fn fail_on_unsupported_field(mut self, fail_on_unsupported_field: bool) -> Self {
self.fail_on_unsupported_field = Some(fail_on_unsupported_field);
self
}
/// Each term in the formed query could be further boosted by their tf-idf score. This sets the boost factor to use when using this feature.
/// Defaults to deactivated (0). Any other positive value activates terms boosting with the given boost factor.
pub fn boost_terms<T>(mut self, boost_terms: T) -> Self
where
T: Into<f64>,
{
self.boost_terms = Some(boost_terms.into());
self
}
/// Specifies whether the input documents should also be included in the search results returned. Defaults to `false`.
pub fn include(mut self, include: bool) -> Self {
self.include = Some(include);
self
}
add_boost_and_name!();
}
impl ShouldSkip for MoreLikeThisQuery {
fn should_skip(&self) -> bool {
self.like.is_empty()
}
}
serialize_with_root!("more_like_this": MoreLikeThisQuery);
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn serialization() {
assert_serialize_query(
Query::more_like_this(["test"]).fields(["title"]),
json!({
"more_like_this": {
"fields": ["title"],
"like": [
"test"
]
}
}),
);
assert_serialize_query(
Query::more_like_this(["test"])
.fields(["title", "description"])
.min_term_freq(1)
.max_query_terms(12)
.boost(1.2)
.name("more_like_this"),
json!({
"more_like_this": {
"fields": ["title", "description"],
"like": [
"test"
],
"min_term_freq": 1,
"max_query_terms": 12,
"boost": 1.2,
"_name": "more_like_this"
}
}),
);
assert_serialize_query(
Query::more_like_this([Document::new("123")]).fields(["title"]),
json!({
"more_like_this": {
"fields": ["title"],
"like": [
{
"_id": "123"
}
]
}
}),
);
assert_serialize_query(
Query::more_like_this([Document::new("123")])
.fields(["title", "description"])
.min_term_freq(1)
.max_query_terms(12)
.boost(1.2)
.name("more_like_this"),
json!({
"more_like_this": {
"fields": ["title", "description"],
"like": [
{
"_id": "123"
}
],
"min_term_freq": 1,
"max_query_terms": 12,
"boost": 1.2,
"_name": "more_like_this"
}
}),
);
assert_serialize_query(
Query::more_like_this([Like::from(Document::new("123")), Like::from("test")])
.fields(["title"]),
json!({
"more_like_this": {
"fields": ["title"],
"like": [
{
"_id": "123"
},
"test"
]
}
}),
);
assert_serialize_query(
Query::more_like_this([
Like::from(
Document::new("123")
.index("test_index")
.routing("test_routing")
.source(false),
),
Like::from("test"),
])
.fields(["title", "description"])
.min_term_freq(1)
.max_query_terms(12)
.boost(1.2)
.name("more_like_this"),
json!({
"more_like_this": {
"fields": ["title", "description"],
"like": [
{
"_id": "123",
"_index": "test_index",
"_routing": "test_routing",
"_source": false
},
"test"
],
"min_term_freq": 1,
"max_query_terms": 12,
"boost": 1.2,
"_name": "more_like_this"
}
}),
);
}
}