1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
use std::{slice, vec};
use std::ops::Range;

use {Tree, NodeId, Node, NodeRef};

/// Iterator that moves out of a tree in insert order.
#[derive(Debug)]
pub struct IntoIter<T>(vec::IntoIter<Node<T>>);
impl<T> ExactSizeIterator for IntoIter<T> { }
impl<T> Iterator for IntoIter<T> {
    type Item = T;
    fn next(&mut self) -> Option<Self::Item> {
        self.0.next().map(|node| node.value)
    }
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.0.size_hint()
    }
}
impl<T> DoubleEndedIterator for IntoIter<T> {
    fn next_back(&mut self) -> Option<Self::Item> {
        self.0.next_back().map(|node| node.value)
    }
}

/// Iterator over values in insert order.
#[derive(Debug)]
pub struct Values<'a, T: 'a>(slice::Iter<'a, Node<T>>);
impl<'a, T: 'a> Clone for Values<'a, T> {
    fn clone(&self) -> Self {
        Values(self.0.clone())
    }
}
impl<'a, T: 'a> ExactSizeIterator for Values<'a, T> { }
impl<'a, T: 'a> Iterator for Values<'a, T> {
    type Item = &'a T;
    fn next(&mut self) -> Option<Self::Item> {
        self.0.next().map(|node| &node.value)
    }
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.0.size_hint()
    }
}
impl<'a, T: 'a> DoubleEndedIterator for Values<'a, T> {
    fn next_back(&mut self) -> Option<Self::Item> {
        self.0.next_back().map(|node| &node.value)
    }
}

/// Mutable iterator over values in insert order.
#[derive(Debug)]
pub struct ValuesMut<'a, T: 'a>(slice::IterMut<'a, Node<T>>);
impl<'a, T: 'a> ExactSizeIterator for ValuesMut<'a, T> { }
impl<'a, T: 'a> Iterator for ValuesMut<'a, T> {
    type Item = &'a mut T;
    fn next(&mut self) -> Option<Self::Item> {
        self.0.next().map(|node| &mut node.value)
    }
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.0.size_hint()
    }
}
impl<'a, T: 'a> DoubleEndedIterator for ValuesMut<'a, T> {
    fn next_back(&mut self) -> Option<Self::Item> {
        self.0.next_back().map(|node| &mut node.value)
    }
}

/// Iterator over nodes in insert order.
#[derive(Debug)]
pub struct Nodes<'a, T: 'a> {
    tree: &'a Tree<T>,
    iter: Range<usize>,
}
impl<'a, T: 'a> Clone for Nodes<'a, T> {
    fn clone(&self) -> Self {
        Self { tree: self.tree, iter: self.iter.clone() }
    }
}
impl<'a, T: 'a> ExactSizeIterator for Nodes<'a, T> { }
impl<'a, T: 'a> Iterator for Nodes<'a, T> {
    type Item = NodeRef<'a, T>;
    fn next(&mut self) -> Option<Self::Item> {
        self.iter.next().map(|i| unsafe { self.tree.get_unchecked(NodeId::from_index(i)) })
    }
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}
impl<'a, T: 'a> DoubleEndedIterator for Nodes<'a, T> {
    fn next_back(&mut self) -> Option<Self::Item> {
        self.iter.next_back().map(|i| unsafe { self.tree.get_unchecked(NodeId::from_index(i)) })
    }
}

impl<T> IntoIterator for Tree<T> {
    type Item = T;
    type IntoIter = IntoIter<T>;
    fn into_iter(self) -> Self::IntoIter {
        IntoIter(self.vec.into_iter())
    }
}

impl<T> Tree<T> {
    /// Returns an iterator over values in insert order.
    pub fn values(&self) -> Values<T> {
        Values(self.vec.iter())
    }

    /// Returns a mutable iterator over values in insert order.
    pub fn values_mut(&mut self) -> ValuesMut<T> {
        ValuesMut(self.vec.iter_mut())
    }

    /// Returns an iterator over nodes in insert order.
    pub fn nodes(&self) -> Nodes<T> {
        Nodes { tree: self, iter: 0..self.vec.len() }
    }
}

macro_rules! axis_iterators {
    ($(#[$m:meta] $i:ident($f:path);)*) => {
        $(
            #[$m]
            #[derive(Debug)]
            pub struct $i<'a, T: 'a>(Option<NodeRef<'a, T>>);
            impl<'a, T: 'a> Clone for $i<'a, T> {
                fn clone(&self) -> Self {
                    $i(self.0)
                }
            }
            impl<'a, T: 'a> Iterator for $i<'a, T> {
                type Item = NodeRef<'a, T>;
                fn next(&mut self) -> Option<Self::Item> {
                    let node = self.0.take();
                    self.0 = node.as_ref().and_then($f);
                    node
                }
            }
        )*
    };
}

axis_iterators! {
    /// Iterator over ancestors.
    Ancestors(NodeRef::parent);

    /// Iterator over previous siblings.
    PrevSiblings(NodeRef::prev_sibling);

    /// Iterator over next siblings.
    NextSiblings(NodeRef::next_sibling);

    /// Iterator over first children.
    FirstChildren(NodeRef::first_child);

    /// Iterator over last children.
    LastChildren(NodeRef::last_child);
}

/// Iterator over children.
#[derive(Debug)]
pub struct Children<'a, T: 'a> {
    front: Option<NodeRef<'a, T>>,
    back: Option<NodeRef<'a, T>>,
}
impl<'a, T: 'a> Clone for Children<'a, T> {
    fn clone(&self) -> Self {
        Self { front: self.front.clone(), back: self.back.clone() }
    }
}
impl<'a, T: 'a> Iterator for Children<'a, T> {
    type Item = NodeRef<'a, T>;
    fn next(&mut self) -> Option<Self::Item> {
        if self.front == self.back {
            let node = self.front.take();
            self.back = None;
            node
        } else {
            let node = self.front.take();
            self.front = node.as_ref().and_then(NodeRef::next_sibling);
            node
        }
    }
}
impl<'a, T: 'a> DoubleEndedIterator for Children<'a, T> {
    fn next_back(&mut self) -> Option<Self::Item> {
        if self.back == self.front {
            let node = self.back.take();
            self.front = None;
            node
        } else {
            let node = self.back.take();
            self.back = node.as_ref().and_then(NodeRef::prev_sibling);
            node
        }
    }
}

/// Open or close edge of a node.
#[derive(Debug)]
pub enum Edge<'a, T: 'a> {
    /// Open.
    Open(NodeRef<'a, T>),
    /// Close.
    Close(NodeRef<'a, T>),
}
impl<'a, T: 'a> Copy for Edge<'a, T> { }
impl<'a, T: 'a> Clone for Edge<'a, T> {
    fn clone(&self) -> Self { *self }
}
impl<'a, T: 'a> Eq for Edge<'a, T> { }
impl<'a, T: 'a> PartialEq for Edge<'a, T> {
    fn eq(&self, other: &Self) -> bool {
        match (*self, *other) {
            (Edge::Open(a), Edge::Open(b)) | (Edge::Close(a), Edge::Close(b)) => {
                a == b
            },
            _ => false,
        }
    }
}

/// Iterator which traverses a subtree.
#[derive(Debug)]
pub struct Traverse<'a, T: 'a> {
    root: NodeRef<'a, T>,
    edge: Option<Edge<'a, T>>,
}
impl<'a, T: 'a> Clone for Traverse<'a, T> {
    fn clone(&self) -> Self {
        Self { root: self.root, edge: self.edge }
    }
}
impl<'a, T: 'a> Iterator for Traverse<'a, T> {
    type Item = Edge<'a, T>;
    fn next(&mut self) -> Option<Self::Item> {
        match self.edge {
            None => {
                self.edge = Some(Edge::Open(self.root));
            },
            Some(Edge::Open(node)) => {
                if let Some(first_child) = node.first_child() {
                    self.edge = Some(Edge::Open(first_child));
                } else {
                    self.edge = Some(Edge::Close(node));
                }
            },
            Some(Edge::Close(node)) => {
                if node == self.root {
                     self.edge = None;
                } else if let Some(next_sibling) = node.next_sibling() {
                    self.edge = Some(Edge::Open(next_sibling));
                } else {
                    self.edge = node.parent().map(Edge::Close);
                }
            },
        }
        self.edge
    }
}

/// Iterator over a node and its descendants.
#[derive(Debug)]
pub struct Descendants<'a, T: 'a>(Traverse<'a, T>);
impl<'a, T: 'a> Clone for Descendants<'a, T> {
    fn clone(&self) -> Self {
        Descendants(self.0.clone())
    }
}
impl<'a, T: 'a> Iterator for Descendants<'a, T> {
    type Item = NodeRef<'a, T>;
    fn next(&mut self) -> Option<Self::Item> {
        for edge in &mut self.0 {
            if let Edge::Open(node) = edge {
                return Some(node);
            }
        }
        None
    }
}

impl<'a, T: 'a> NodeRef<'a, T> {
    /// Returns an iterator over ancestors.
    pub fn ancestors(&self) -> Ancestors<'a, T> {
        Ancestors(self.parent())
    }

    /// Returns an iterator over previous siblings.
    pub fn prev_siblings(&self) -> PrevSiblings<'a, T> {
        PrevSiblings(self.prev_sibling())
    }

    /// Returns an iterator over next siblings.
    pub fn next_siblings(&self) -> NextSiblings<'a, T> {
        NextSiblings(self.next_sibling())
    }

    /// Returns an iterator over first children.
    pub fn first_children(&self) -> FirstChildren<'a, T> {
        FirstChildren(self.first_child())
    }

    /// Returns an iterator over last children.
    pub fn last_children(&self) -> LastChildren<'a, T> {
        LastChildren(self.last_child())
    }

    /// Returns an iterator over children.
    pub fn children(&self) -> Children<'a, T> {
        Children {
            front: self.first_child(),
            back: self.last_child(),
        }
    }

    /// Returns an iterator which traverses the subtree starting at this node.
    pub fn traverse(&self) -> Traverse<'a, T> {
        Traverse {
            root: *self,
            edge: None,
        }
    }

    /// Returns an iterator over this node and its descendants.
    pub fn descendants(&self) -> Descendants<'a, T> {
        Descendants(self.traverse())
    }
}