1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
use std::fmt;

use indexmap::IndexMap;
use instant::{Duration, Instant};
use log::*;

use crate::{EGraph, Id, Language, Metadata, RecExpr, Rewrite, SearchMatches};

/// Data generated by running a [`Runner`] one iteration.
///
/// If the `serde-1` feature is enabled, this implements
/// [`serde::Serialize`][ser], which is useful if you want to output
/// this as a JSON or some other format.
///
/// [`Runner`]: trait.Runner.html
/// [ser]: https://docs.rs/serde/latest/serde/trait.Serialize.html
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde-1", derive(serde::Serialize))]
#[non_exhaustive]
pub struct Iteration {
    /// The number of enodes in the egraph at the start of this
    /// iteration.
    pub egraph_nodes: usize,
    /// The number of eclasses in the egraph at the start of this
    /// iteration.
    pub egraph_classes: usize,
    /// A map from rule name to number of times it was _newly_ applied
    /// in this iteration.
    pub applied: IndexMap<String, usize>,
    /// Seconds spent searching in this iteration.
    pub search_time: f64,
    /// Seconds spent applying rules in this iteration.
    pub apply_time: f64,
    /// Seconds spent [`rebuild`](struct.EGraph.html#method.rebuild)ing
    /// the egraph in this iteration.
    pub rebuild_time: f64,
    // TODO optionally put best cost back in there
    // pub best_cost: Cost,
}

/// Data generated by running a [`Runner`] to completion.
///
/// If the `serde-1` feature is enabled, this implements
/// [`serde::Serialize`][ser], which is useful if you want to output
/// this as a JSON or some other format.
///
/// [`Runner`]: trait.Runner.html
/// [ser]: https://docs.rs/serde/latest/serde/trait.Serialize.html
#[derive(Debug, Clone)]
#[cfg_attr(
    feature = "serde-1",
    derive(serde::Serialize),
    serde(bound(serialize = "
        L: Language + std::fmt::Display,
        E: serde::Serialize
    "))
)]
#[non_exhaustive]
pub struct RunReport<L, E> {
    /// The initial expression added to the egraph.
    pub initial_expr: RecExpr<L>,
    /// The eclass id of the initial expression added to the egraph.
    pub initial_expr_eclass: Id,
    // pub initial_cost: Cost,
    /// The data generated by each [`Iteration`](struct.Iteration.html).
    pub iterations: Vec<Iteration>,
    // pub final_expr: RecExpr<L>,
    // pub final_cost: Cost,
    /// The total time spent running rules
    pub rules_time: f64,
    // pub extract_time: f64,
    /// The reason the [`Runner`](trait.Runner.html) stop iterating.
    pub stop_reason: E,
    // metrics
    // pub ast_size: usize,
    // pub ast_depth: usize,
}

/** Faciliates running rewrites over an [`EGraph`].

One use for [`EGraph`]s is as the basis of a rewriting system.
Since an egraph never "forgets" state when applying a [`Rewrite`], you
can apply many rewrites many times quite efficiently.
After the egraph is "full" (the rewrites can no longer find new
equalities) or some other condition, the egraph compactly represents
many, many equivalent expressions.
At this point, the egraph is ready for extraction (see [`Extractor`])
which can pick the represented expression that's best according to
some cost function.

This technique is called
[equality saturation](https://www.cs.cornell.edu/~ross/publications/eqsat/)
in general.
However, there can be many challenges in implementing this "outer
loop" of applying rewrites, mostly revolving around which rules to run
and when to stop.

Implementing the [`Runner`] trait allows you to customize this outer
loop in many ways.
Many of [`Runner`]s method have default implementation, and these call
the various hooks ([`pre_step`], [`during_step`], [`post_step`])
during their operation.

[`SimpleRunner`] is `egg`'s provided [`Runner`] that has reasonable
defaults and implements many useful things like saturation checking,
an egraph size limits, and rule back off.
Consider using [`SimpleRunner`] before implementing your own
[`Runner`].

[`EGraph`]: struct.EGraph.html
[`Extractor`]: struct.Extractor.html
[`SimpleRunner`]: struct.SimpleRunner.html
[`Runner`]: trait.Runner.html
[`pre_step`]: trait.Runner.html#method.pre_step
[`during_step`]: trait.Runner.html#method.during_step
[`post_step`]: trait.Runner.html#method.post_step
*/
pub trait Runner<L, M>
where
    L: Language,
    M: Metadata<L>,
{
    /// The type of an error that should stop the runner.
    ///
    /// This will be recorded in
    /// [`RunReport`](struct.RunReport.html#structfield.stop_reason).
    type Error: fmt::Debug;
    // TODO make it so Runners can add fields to Iteration data

    /// The pre-iteration hook. If this returns an error, then the
    /// search will stop. Useful for checking stop conditions or
    /// updating `Runner` state.
    ///
    /// Default implementation simply returns `Ok(())`.
    fn pre_step(&mut self, _egraph: &mut EGraph<L, M>) -> Result<(), Self::Error> {
        Ok(())
    }

    /// The post-iteration hook. If this returns an error, then the
    /// search will stop. Useful for checking stop conditions or
    /// updating `Runner` state.
    ///
    /// Default implementation simply returns `Ok(())`.
    fn post_step(
        &mut self,
        _iteration: &Iteration,
        _egraph: &mut EGraph<L, M>,
    ) -> Result<(), Self::Error> {
        Ok(())
    }

    /// The intra-iteration hook. If this returns an error, then the
    /// search will stop. Useful for checking stop conditions.
    /// This is called after search each rule and after applying each rule.
    ///
    /// Default implementation simply returns `Ok(())`.
    fn during_step(&mut self, _egraph: &EGraph<L, M>) -> Result<(), Self::Error> {
        Ok(())
    }

    /// A hook allowing you to customize rewrite search behavior.
    /// Useful to implement rule management.
    ///
    /// Default implementation just calls
    /// [`Rewrite::search`](struct.Rewrite.html#method.search).
    fn search_rewrite(
        &mut self,
        egraph: &mut EGraph<L, M>,
        rewrite: &Rewrite<L, M>,
    ) -> Vec<SearchMatches> {
        rewrite.search(egraph)
    }

    /// A hook allowing you to customize rewrite application behavior.
    /// Useful to implement rule management.
    ///
    /// Default implementation just calls
    /// [`Rewrite::apply`](struct.Rewrite.html#method.apply)
    /// and returns number of new applications.
    fn apply_rewrite(
        &mut self,
        egraph: &mut EGraph<L, M>,
        rewrite: &Rewrite<L, M>,
        matches: Vec<SearchMatches>,
    ) -> usize {
        rewrite.apply(egraph, &matches).len()
    }

    /// Run the rewrites once on the egraph.
    ///
    /// It first searches all the rules using the [`search_rewrite`] wrapper.
    /// Then it applies all the rules using the [`apply_rewrite`] wrapper.
    ///
    /// ## Expectations
    ///
    /// After searching or applying a rule, this should call
    /// [`during_step`], returning immediately if it returns an error.
    /// This should _not_ call [`pre_step`] or [`post_step`], those
    /// should be called by the [`run`] method.
    ///
    /// Default implementation just calls
    /// [`Rewrite::apply`](struct.Rewrite.html#method.apply)
    /// and returns number of new applications.
    ///
    /// ## Default implementation
    ///
    /// The default implementation is probably good enough.
    /// It conforms to all the above expectations, and it performs the
    /// necessary bookkeeping to return an [`Iteration`].
    /// It additionally performs useful logging at the debug and info
    /// levels.
    /// If you're using [`env_logger`](https://docs.rs/env_logger/)
    /// (which the tests of `egg` do),
    /// see its documentation on how to see the logs.
    ///
    /// [`search_rewrite`]: trait.Runner.html#method.search_rewrite
    /// [`apply_rewrite`]: trait.Runner.html#method.apply_rewrite
    /// [`pre_step`]: trait.Runner.html#method.pre_step
    /// [`during_step`]: trait.Runner.html#method.during_step
    /// [`post_step`]: trait.Runner.html#method.post_step
    /// [`run`]: trait.Runner.html#method.run
    /// [`Iteration`]: struct.Iteration.html
    fn step(
        &mut self,
        egraph: &mut EGraph<L, M>,
        rules: &[Rewrite<L, M>],
    ) -> Result<Iteration, Self::Error> {
        let egraph_nodes = egraph.total_size();
        let egraph_classes = egraph.number_of_classes();
        trace!("EGraph {:?}", egraph.dump());

        let search_time = Instant::now();

        let mut matches = Vec::new();
        for rule in rules.iter() {
            let ms = self.search_rewrite(egraph, rule);
            matches.push(ms);
            self.during_step(egraph)?
        }

        let search_time = search_time.elapsed().as_secs_f64();
        info!("Search time: {}", search_time);

        let apply_time = Instant::now();

        let mut applied = IndexMap::new();
        for (rw, ms) in rules.iter().zip(matches) {
            let total_matches: usize = ms.iter().map(|m| m.substs.len()).sum();
            if total_matches == 0 {
                continue;
            }

            debug!("Applying {} {} times", rw.name(), total_matches);

            let actually_matched = self.apply_rewrite(egraph, rw, ms);
            if actually_matched > 0 {
                if let Some(count) = applied.get_mut(rw.name()) {
                    *count += 1;
                } else {
                    applied.insert(rw.name().to_owned(), 1);
                }
                debug!("Applied {} {} times", rw.name(), actually_matched);
            }

            self.during_step(egraph)?
        }

        let apply_time = apply_time.elapsed().as_secs_f64();
        info!("Apply time: {}", apply_time);

        let rebuild_time = Instant::now();
        egraph.rebuild();

        let rebuild_time = rebuild_time.elapsed().as_secs_f64();
        info!("Rebuild time: {}", rebuild_time);
        info!(
            "Size: n={}, e={}",
            egraph.total_size(),
            egraph.number_of_classes()
        );

        trace!("Running post_step...");
        Ok(Iteration {
            applied,
            egraph_nodes,
            egraph_classes,
            search_time,
            apply_time,
            rebuild_time,
            // best_cost,
        })
    }

    /// Run the rewrites on the egraph until an error.
    ///
    /// This should call [`pre_step`], [`step`], and [`post_step`] in
    /// a loop, in that order, until one of them returns an error.
    /// It returns the completed [`Iteration`]s and the error that
    /// caused it to stop.
    ///
    /// The default implementation does these things.
    ///
    /// [`pre_step`]: trait.Runner.html#method.pre_step
    /// [`step`]: trait.Runner.html#method.step
    /// [`post_step`]: trait.Runner.html#method.post_step
    /// [`Iteration`]: struct.Iteration.html
    fn run(
        &mut self,
        egraph: &mut EGraph<L, M>,
        rules: &[Rewrite<L, M>],
    ) -> (Vec<Iteration>, Self::Error) {
        let mut iterations = vec![];
        let mut fn_loop = || -> Result<(), Self::Error> {
            loop {
                trace!("Running pre_step...");
                self.pre_step(egraph)?;
                trace!("Running step...");
                iterations.push(self.step(egraph, rules)?);
                trace!("Running post_step...");
                self.post_step(iterations.last().unwrap(), egraph)?;
            }
        };
        let stop_reason = fn_loop().unwrap_err();
        info!("Stopping {:?}", stop_reason);
        (iterations, stop_reason)
    }

    /// Given an initial expression, make and egraph and [`run`] the
    /// rules on it.
    ///
    /// The default implementation does exactly this, also performing
    /// the bookkeeping needed to return a [`RunReport`].
    ///
    /// [`run`]: trait.Runner.html#method.run
    /// [`RunReport`]: struct.RunReport.html
    fn run_expr(
        &mut self,
        initial_expr: RecExpr<L>,
        rules: &[Rewrite<L, M>],
    ) -> (EGraph<L, M>, RunReport<L, Self::Error>) {
        // let initial_cost = calculate_cost(&initial_expr);
        // info!("Without empty: {}", initial_expr.pretty(80));

        let (mut egraph, initial_expr_eclass) = EGraph::from_expr(&initial_expr);

        let rules_time = Instant::now();
        let (iterations, stop_reason) = self.run(&mut egraph, rules);
        let rules_time = rules_time.elapsed().as_secs_f64();

        // let extract_time = Instant::now();
        // let best = Extractor::new(&egraph).find_best(root);
        // let extract_time = extract_time.elapsed().as_secs_f64();

        // info!("Extract time: {}", extract_time);
        // info!("Initial cost: {}", initial_cost);
        // info!("Final cost: {}", best.cost);
        // info!("Final: {}", best.expr.pretty(80));

        let report = RunReport {
            iterations,
            rules_time,
            // extract_time,
            stop_reason,
            // ast_size: best.expr.ast_size(),
            // ast_depth: best.expr.ast_depth(),
            initial_expr,
            initial_expr_eclass: egraph.find(initial_expr_eclass),
            // initial_cost,
            // final_cost: best.cost,
            // final_expr: best.expr,
        };
        (egraph, report)
    }
}

/** A reasonable default [`Runner`].

[`SimpleRunner`] is a [`Runner`], so it runs rewrites over an [`EGraph`].
This implementation offers several conveniences to prevent rewriting
from behaving badly and eating your computer:

- Saturation checking

  [`SimpleRunner`] checks to see if any of the rules added anything
  new to the [`EGraph`]. If none did, then it stops, returning
  [`SimpleRunnerError::Saturated`](enum.SimpleRunnerError.html#variant.Saturated).

- Iteration limits

  You can set a upper limit of iterations to do in case the search
  doesn't stop for some other reason. If this limit is hit, it stops with
  [`SimpleRunnerError::IterationLimit`](enum.SimpleRunnerError.html#variant.IterationLimit).

- [`EGraph`] size limit

  You can set a upper limit on the number of enodes in the egraph.
  If this limit is hit, it stops with
  [`SimpleRunnerError::NodeLimit`](enum.SimpleRunnerError.html#variant.NodeLimit).

- Time limit

  You can set a time limit on the runner.
  If this limit is hit, it stops with
  [`SimpleRunnerError::TimeLimit`](enum.SimpleRunnerError.html#variant.TimeLimit).

- Rule backoff

  Some rules enable themselves, blowing up the [`EGraph`] and
  preventing other rewrites from running as many times.
  To prevent this, [`SimpleRunner`] implements exponentional rule backoff.

  For each rewrite, there exists a configurable initial match limit.
  If a rewrite search yield more than this limit, then we ban this
  rule for number of iterations, double its limit, and double the time
  it will be banned next time.

  This seems effective at preventing explosive rules like
  associativity from taking an unfair amount of resources.


[`SimpleRunner`]: struct.SimpleRunner.html
[`Runner`]: trait.Runner.html
[`EGraph`]: struct.EGraph.html

# Example

```
use egg::{*, rewrite as rw};

define_language! {
    enum SimpleLanguage {
        Num(i32),
        Add = "+",
        Mul = "*",
        Symbol(String),
    }
}

let rules: &[Rewrite<SimpleLanguage, ()>] = &[
    rw!("commute-add"; "(+ ?a ?b)" => "(+ ?b ?a)"),
    rw!("commute-mul"; "(* ?a ?b)" => "(* ?b ?a)"),

    rw!("add-0"; "(+ ?a 0)" => "?a"),
    rw!("mul-0"; "(* ?a 0)" => "0"),
    rw!("mul-1"; "(* ?a 1)" => "?a"),
];

let start = "(+ 0 (* 1 foo))".parse().unwrap();
// SimpleRunner is customizable in the builder pattern style.
let (egraph, report) = SimpleRunner::default()
    .with_iter_limit(10)
    .with_node_limit(10_000)
    .run_expr(start, &rules);
println!(
    "Stopped after {} iterations, reason: {:?}",
    report.iterations.len(),
    report.stop_reason
);
```
*/
pub struct SimpleRunner {
    iter_limit: usize,
    node_limit: usize,
    time_limit: Duration,
    start_time: Instant,
    i: usize,
    stats: IndexMap<String, RuleStats>,
    initial_match_limit: usize,
    ban_length: usize,
}

struct RuleStats {
    times_applied: usize,
    banned_until: usize,
    times_banned: usize,
}

impl Default for SimpleRunner {
    fn default() -> Self {
        Self {
            iter_limit: 30,
            node_limit: 10_000,
            i: 0,
            start_time: Instant::now(),
            time_limit: Duration::from_secs(60),
            stats: Default::default(),
            initial_match_limit: 1_000,
            ban_length: 5,
        }
    }
}

impl SimpleRunner {
    /// Sets the iteration limit. Default: 30
    pub fn with_iter_limit(self, iter_limit: usize) -> Self {
        Self { iter_limit, ..self }
    }

    /// Sets the egraph size limit (in enodes). Default: 10,000
    pub fn with_node_limit(self, node_limit: usize) -> Self {
        Self { node_limit, ..self }
    }

    /// Sets the runner time limit. Default: 60 seconds
    pub fn with_time_limit(self, time_limit: Duration) -> Self {
        Self { time_limit, ..self }
    }

    /// Sets the initial match limit before a rule is banned. Default: 1,000
    ///
    /// Setting this to a really big number will effectively disable
    /// rule backoff.
    pub fn with_initial_match_limit(self, initial_match_limit: usize) -> Self {
        Self {
            initial_match_limit,
            ..self
        }
    }
}

/// Error returned by [`SimpleRunner`] when it stops.
///
/// [`SimpleRunner`]: struct.SimpleRunner.html
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde-1", derive(serde::Serialize))]
pub enum SimpleRunnerError {
    /// The egraph saturated, i.e., there was an iteration where we
    /// didn't learn anything new from applying the rules.
    Saturated,
    /// The iteration limit was hit. The data is the iteration limit.
    IterationLimit(usize),
    /// The enode limit was hit. The data is the enode limit.
    NodeLimit(usize),
    /// The time limit was hit. The data is the time limit in seconds.
    TimeLimit(f64),
}

impl<L, M> Runner<L, M> for SimpleRunner
where
    L: Language,
    M: Metadata<L>,
{
    type Error = SimpleRunnerError;

    fn pre_step(&mut self, egraph: &mut EGraph<L, M>) -> Result<(), Self::Error> {
        info!(
            "\n\nIteration {}, n={}, e={}",
            self.i,
            egraph.total_size(),
            egraph.number_of_classes()
        );
        if self.i >= self.iter_limit {
            Err(SimpleRunnerError::IterationLimit(self.i))
        } else {
            Ok(())
        }
    }

    fn during_step(&mut self, egraph: &EGraph<L, M>) -> Result<(), Self::Error> {
        let size = egraph.total_size();
        let elapsed = self.start_time.elapsed();
        if size > self.node_limit {
            Err(SimpleRunnerError::NodeLimit(size))
        } else if elapsed > self.time_limit {
            Err(SimpleRunnerError::TimeLimit(elapsed.as_secs_f64()))
        } else {
            Ok(())
        }
    }

    fn post_step(
        &mut self,
        iteration: &Iteration,
        _egraph: &mut EGraph<L, M>,
    ) -> Result<(), Self::Error> {
        let is_banned = |s: &RuleStats| s.banned_until > self.i;
        let any_bans = self.stats.values().any(is_banned);

        self.i += 1;
        if !any_bans && iteration.applied.is_empty() {
            Err(SimpleRunnerError::Saturated)
        } else {
            Ok(())
        }
    }

    fn search_rewrite(
        &mut self,
        egraph: &mut EGraph<L, M>,
        rewrite: &Rewrite<L, M>,
    ) -> Vec<SearchMatches> {
        if let Some(limit) = self.stats.get_mut(rewrite.name()) {
            if self.i < limit.banned_until {
                debug!(
                    "Skipping {} ({}-{}), banned until {}...",
                    rewrite.name(),
                    limit.times_applied,
                    limit.times_banned,
                    limit.banned_until,
                );
                return vec![];
            }

            let matches = rewrite.search(egraph);
            let total_len: usize = matches.iter().map(|m| m.substs.len()).sum();
            let threshold = self.initial_match_limit << limit.times_banned;
            if total_len > threshold {
                let ban_length = self.ban_length << limit.times_banned;
                limit.times_banned += 1;
                limit.banned_until = self.i + ban_length;
                info!(
                    "Banning {} ({}-{}) for {} iters: {} < {}",
                    rewrite.name(),
                    limit.times_applied,
                    limit.times_banned,
                    ban_length,
                    threshold,
                    total_len,
                );
                vec![]
            } else {
                limit.times_applied += 1;
                matches
            }
        } else {
            self.stats.insert(
                rewrite.name().into(),
                RuleStats {
                    times_applied: 0,
                    banned_until: 0,
                    times_banned: 0,
                },
            );
            rewrite.search(egraph)
        }
    }
}