1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
use crate::ec::verification::Signature;
use crate::elem::{
elem_reduced_to_scalar, elem_to_unencoded, scalar_add, scalar_inv_to_mont, scalar_mul,
scalar_sub, scalar_to_unencoded, Elem, Scalar, R,
};
use crate::err::KeyRejected;
use crate::jacobian::exchange::affine_from_jacobian;
use crate::key::private::create_private_key;
use crate::key::public::PublicKey;
use crate::limb::{LIMB_LENGTH, ONE};
use crate::norop::parse_big_endian;
use crate::rand::{SecureRandom, DefaultRand};
use crate::sm2p256::{base_point_mul, scalar_to_mont};
use core::marker::PhantomData;
pub struct KeyPair {
d: Scalar<R>,
pk: PublicKey,
}
impl KeyPair {
pub fn new(private_key: &[u8]) -> Result<Self, KeyRejected> {
let mut key_limb = [0; LIMB_LENGTH];
parse_big_endian(&mut key_limb, private_key)?;
let d = Scalar {
limbs: scalar_to_mont(&key_limb),
m: PhantomData,
};
let pk = PublicKey::public_from_private(&d)?;
Ok(KeyPair { d, pk })
}
pub fn public_key(&self) -> PublicKey {
self.pk
}
pub fn sign(
&self,
message: &[u8],
) -> Result<Signature, KeyRejected> {
let ctx = libsm::sm2::signature::SigCtx::new();
let pk_point = ctx
.load_pubkey(self.pk.bytes_less_safe())
.map_err(|_| KeyRejected::sign_error())?;
let digest = ctx.hash("1234567812345678", &pk_point, message);
self.sign_digest(&mut DefaultRand(rand::thread_rng()), &digest)
}
pub fn sign_with_seed(
&self,
rng: &mut dyn SecureRandom,
message: &[u8],
) -> Result<Signature, KeyRejected> {
let ctx = libsm::sm2::signature::SigCtx::new();
let pk_point = ctx
.load_pubkey(self.pk.bytes_less_safe())
.map_err(|_| KeyRejected::sign_error())?;
let digest = ctx.hash("1234567812345678", &pk_point, message);
self.sign_digest(rng, &digest)
}
fn sign_digest(
&self,
rng: &mut dyn SecureRandom,
digest: &[u8],
) -> Result<Signature, KeyRejected> {
for _ in 0..100 {
#[allow(unused_variables)]
let rk = create_private_key(rng)?;
#[cfg(test)]
let rk = Scalar {
limbs: [
0xd89cdf6229c4bddf,
0xacf005cd78843090,
0xe5a220abf7212ed6,
0xdc30061d04874834,
],
m: PhantomData,
};
let rq = base_point_mul(&rk.limbs);
let r = {
let (x, _) = affine_from_jacobian(&rq)?;
let x = elem_to_unencoded(&x);
elem_reduced_to_scalar(&x)
};
if r.is_zero() {
continue;
}
let mut dl = [0; LIMB_LENGTH];
parse_big_endian(&mut dl, digest)?;
let edl = Elem {
limbs: dl,
m: PhantomData,
};
let e = elem_reduced_to_scalar(&edl);
static SCALAR_ONE: Scalar = Scalar {
limbs: ONE,
m: PhantomData,
};
let r = scalar_add(&r, &e);
let da_ue = scalar_to_unencoded(&self.d);
let left = scalar_inv_to_mont(&scalar_add(&da_ue, &SCALAR_ONE));
let dr = scalar_mul(&self.d, &r);
let right = scalar_sub(&rk, &dr);
let s = scalar_mul(&left, &right);
#[cfg(test)]
{
assert_eq!(
r.limbs,
[
0x343dcb2091bc1f2e,
0x66c250abf482e4cb,
0xb37a835a2b5a022f,
0x76415405cbb177eb
]
);
assert_eq!(
s.limbs,
[
0x39b532eb66b9cd90,
0x67a1dee839e8179d,
0x19073922992c6718,
0x61f0665f805e78dd
]
);
}
return Ok(Signature::from_scalars(r, s));
}
Err(KeyRejected::sign_digest_error())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn sign_verify_test() {
let test_word = b"hello world";
let private_key = b"f68de5710d66195e2bacd994b1408d4e";
let key_pair = KeyPair::new(private_key).unwrap();
let sig = key_pair.sign(test_word).unwrap();
sig.verify(&key_pair.public_key(), test_word).unwrap()
}
}
#[cfg(feature = "internal_benches")]
mod sign_bench {
use super::*;
use rand::prelude::ThreadRng;
use rand::Rng;
extern crate test;
#[bench]
fn es_sign_bench(bench: &mut test::Bencher) {
pub struct EgRand(ThreadRng);
impl SecureRandom for EgRand {
fn fill(&mut self, dest: &mut [u8]) {
self.0.fill(dest)
}
}
let test_word = b"hello world";
let mut rng = EgRand(rand::thread_rng());
let private_key = b"f68de5710d66195e2bacd994b1408d4e";
let key_pair = KeyPair::new(private_key).unwrap();
bench.iter(|| {
let _ = key_pair.sign_with_seed(&mut rng, test_word).unwrap();
});
}
#[bench]
fn libsm_sign_bench(bench: &mut test::Bencher) {
let test_word = b"hello world";
let ctx = libsm::sm2::signature::SigCtx::new();
let (pk, sk) = ctx.new_keypair();
bench.iter(|| {
let _ = ctx.sign(test_word, &sk, &pk);
});
}
#[bench]
fn es_verify_bench(bench: &mut test::Bencher) {
pub struct EgRand(ThreadRng);
impl SecureRandom for EgRand {
fn fill(&mut self, dest: &mut [u8]) {
self.0.fill(dest)
}
}
let test_word = b"hello world";
let mut rng = EgRand(rand::thread_rng());
let private_key = b"f68de5710d66195e2bacd994b1408d4e";
let key_pair = KeyPair::new(private_key).unwrap();
let sig = key_pair.sign_with_seed(&mut rng, test_word).unwrap();
let pk = key_pair.public_key();
bench.iter(|| {
let _ = sig.verify(&pk, test_word).unwrap();
});
}
#[bench]
fn libsm_verify_bench(bench: &mut test::Bencher) {
let test_word = b"hello world";
let ctx = libsm::sm2::signature::SigCtx::new();
let (pk, sk) = ctx.new_keypair();
let sig = ctx.sign(test_word, &sk, &pk);
bench.iter(|| {
let _ = ctx.verify(test_word, &pk, &sig);
});
}
}