Crate edgevec

Crate edgevec 

Source
Expand description

Β§EdgeVec

High-performance embedded vector database for Browser, Node, and Edge.

Β§Current Status

PHASE 3: Implementation (Week 7 Complete)

Status: Week 7 Complete β€” Persistence Hardened

Core vector storage, HNSW graph indexing, and full durability (WAL + Snapshots) are implemented and verified.

Β§Implemented Features

  • HNSW Graph: Full insertion and search implementation with heuristic optimization.
  • Vector Storage: Contiguous memory layout for fast access.
  • Scalar Quantization (SQ8): 4x memory reduction (f32 -> u8) with high accuracy.
  • Durability: Write-Ahead Log (WAL) with CRC32 checksums, crash recovery, and atomic snapshots.
  • Metrics: L2 (Euclidean), Cosine, and Dot Product distance functions.

Β§Development Protocol

EdgeVec follows a military-grade development protocol:

  1. Architecture Phase β€” Design docs must be approved before planning
  2. Planning Phase β€” Roadmap must be approved before coding
  3. Implementation Phase β€” Weekly tasks must be approved before coding
  4. All gates require HOSTILE_REVIEWER approval

Β§Example

use edgevec::{HnswConfig, HnswIndex, Metric, VectorStorage};

// 1. Create Config
let config = HnswConfig::new(128);

// 2. Initialize Storage and Index
let mut storage = VectorStorage::new(&config, None);
let mut index = HnswIndex::new(config, &storage).expect("failed to create index");

// 3. Insert Vectors
let vector = vec![0.5; 128];
let id = index.insert(&vector, &mut storage).expect("failed to insert");

// 4. Search
let query = vec![0.5; 128];
let results = index.search(&query, 10, &storage).expect("failed to search");

assert!(!results.is_empty());
assert_eq!(results[0].vector_id, id);

Β§Persistence Example

use edgevec::{HnswConfig, HnswIndex, VectorStorage};
use edgevec::persistence::{write_snapshot, read_snapshot, MemoryBackend};

// Create index and storage
let config = HnswConfig::new(128);
let mut storage = VectorStorage::new(&config, None);
let mut index = HnswIndex::new(config, &storage).expect("failed to create");

// Save snapshot using storage backend
let mut backend = MemoryBackend::new();
write_snapshot(&index, &storage, &mut backend).expect("failed to save");

// Load snapshot
let (loaded_index, loaded_storage) = read_snapshot(&backend).expect("failed to load");

Β§Next Steps (Phase 5)

  1. Documentation: Finalize API docs.
  2. NPM Package: Release to npm registry.
  3. Performance: Final tuning and benchmarks.

Β§Documentation

Β§πŸš€ EdgeVec

CI Performance Crates.io License: MIT

High-performance vector search for Browser, Node, and Edge

βœ… STATUS: Alpha Release Ready β€” All performance targets exceeded.


Β§What’s New in v0.3.0

Β§Soft Delete API (RFC-001)

  • soft_delete(id) β€” O(1) tombstone-based deletion
  • is_deleted(id) β€” Check deletion status
  • deleted_count() / live_count() β€” Vector statistics
  • tombstone_ratio() β€” Monitor index health

Β§Compaction API

  • compact() β€” Rebuild index removing all tombstones
  • needs_compaction() β€” Check if compaction recommended
  • compaction_warning() β€” Get actionable warning message
  • Configurable threshold (default: 30% tombstones)

Β§WASM Bindings

  • Full soft delete API exposed to JavaScript/TypeScript
  • softDelete(), isDeleted(), deletedCount(), liveCount()
  • compact(), needsCompaction(), compactionWarning()
  • Interactive browser demo at /wasm/examples/soft_delete.html

Β§Persistence Format v0.3

  • Automatic migration from v0.2 snapshots
  • Tombstone state preserved across save/load cycles

Β§Previous (v0.2.1)

  • Safety hardening with bytemuck for alignment-verified operations
  • Batch insert API with progress callback
  • 24x faster search than voy (fastest pure-WASM competitor)

Β§What is EdgeVec?

EdgeVec is an embedded vector database built in Rust with first-class WASM support. It’s designed to run anywhere: browsers, Node.js, mobile apps, and edge devices.

Β§Key Features

  • Sub-millisecond search β€” 0.23ms at 100k vectors (768d, quantized)
  • HNSW Indexing β€” O(log n) approximate nearest neighbor search
  • Scalar Quantization (SQ8) β€” 3.6x memory compression
  • WASM-First β€” Native browser support via WebAssembly
  • Persistent Storage β€” IndexedDB in browser, file system elsewhere
  • Minimal Dependencies β€” No C compiler required, WASM-ready
  • Tiny Bundle β€” 213 KB gzipped (57% under 500KB target)

Β§Quick Start

Β§Installation

npm install edgevec

For Rust users: To achieve optimal performance, ensure your .cargo/config.toml includes:

[build]
rustflags = ["-C", "target-cpu=native"]

Without this configuration, performance will be 60-78% slower due to missing SIMD optimizations.

Β§Browser/Node.js Usage

import init, { EdgeVec, EdgeVecConfig } from 'edgevec';

async function main() {
    // 1. Initialize WASM (required once)
    await init();

    // 2. Create Config and Index
    const config = new EdgeVecConfig(128);  // 128 dimensions
    config.metric = 'cosine';  // Optional: 'l2', 'cosine', or 'dot'
    const index = new EdgeVec(config);

    // 3. Insert Vectors
    const vector = new Float32Array(128).fill(0.1);
    const id = index.insert(vector);
    console.log(`Inserted vector with ID: ${id}`);

    // 4. Search
    const query = new Float32Array(128).fill(0.1);
    const results = index.search(query, 10);
    console.log("Results:", results);
    // Results: [{ id: 0, score: 0.0 }, ...]

    // 5. Save to IndexedDB (browser) or file system
    await index.save("my-vector-db");
}

main().catch(console.error);

Β§Load Existing Index

import init, { EdgeVec } from 'edgevec';

await init();
const index = await EdgeVec.load("my-vector-db");
const results = index.search(queryVector, 10);

Β§Rust Usage

use edgevec::{HnswConfig, HnswIndex, VectorStorage};
use edgevec::persistence::{write_snapshot, MemoryBackend};

fn main() -> Result<(), Box<dyn std::error::Error>> {
    // 1. Create Config & Storage
    let config = HnswConfig::new(128);
    let mut storage = VectorStorage::new(&config, None);

    // 2. Create Index
    let mut index = HnswIndex::new(config, &storage)?;

    // 3. Insert Vectors
    let vec1 = vec![1.0; 128];
    let _id1 = index.insert(&vec1, &mut storage)?;

    // 4. Search
    let query = vec![1.0; 128];
    let results = index.search(&query, 10, &storage)?;
    println!("Found {} results", results.len());

    // 5. Save Snapshot
    let mut backend = MemoryBackend::new();
    write_snapshot(&index, &storage, &mut backend)?;

    Ok(())
}

Β§Batch Insert (Rust)

For inserting many vectors efficiently, use the batch insert API:

use edgevec::{HnswConfig, HnswIndex, VectorStorage};
use edgevec::batch::BatchInsertable;
use edgevec::error::BatchError;

fn main() -> Result<(), BatchError> {
    let config = HnswConfig::new(128);
    let mut storage = VectorStorage::new(&config, None);
    let mut index = HnswIndex::new(config, &storage).unwrap();

    // Prepare vectors as (id, data) tuples
    let vectors: Vec<(u64, Vec<f32>)> = (1..=1000)
        .map(|i| (i as u64, vec![i as f32; 128]))
        .collect();

    // Batch insert with progress tracking
    let ids = index.batch_insert(vectors, &mut storage, Some(|inserted, total| {
        println!("Progress: {}/{}", inserted, total);
    }))?;

    println!("Inserted {} vectors", ids.len());
    Ok(())
}

Features: Progress tracking, best-effort semantics, and unified error handling.

Β§Soft Delete (Rust)

Delete vectors without rebuilding the index (v0.3.0+):

use edgevec::{HnswConfig, HnswIndex, VectorStorage};

fn main() -> Result<(), Box<dyn std::error::Error>> {
    let config = HnswConfig::new(128);
    let mut storage = VectorStorage::new(&config, None);
    let mut index = HnswIndex::new(config, &storage)?;

    // Insert a vector
    let vector = vec![1.0; 128];
    let id = index.insert(&vector, &mut storage)?;

    // Soft delete (O(1) operation)
    let was_deleted = index.soft_delete(id)?;
    println!("Deleted: {}", was_deleted);

    // Check deletion status
    println!("Is deleted: {}", index.is_deleted(id)?);

    // Get statistics
    println!("Live: {}, Deleted: {}", index.live_count(), index.deleted_count());
    println!("Tombstone ratio: {:.1}%", index.tombstone_ratio() * 100.0);

    // Compact when tombstones accumulate (rebuilds index)
    if index.needs_compaction() {
        let (new_index, new_storage, result) = index.compact(&mut storage)?;
        println!("Removed {} tombstones", result.tombstones_removed);
        // Use new_index and new_storage for future operations
    }

    Ok(())
}

Β§Soft Delete (JavaScript)

import init, { EdgeVec, EdgeVecConfig } from 'edgevec';

await init();
const config = new EdgeVecConfig(128);
const index = new EdgeVec(config);

// Insert vectors
const vector = new Float32Array(128).fill(0.5);
const id = index.insert(vector);

// Soft delete
const wasDeleted = index.softDelete(id);
console.log('Deleted:', wasDeleted);

// Statistics
console.log('Live:', index.liveCount());
console.log('Deleted:', index.deletedCount());
console.log('Tombstone ratio:', index.tombstoneRatio());

// Compact when needed
if (index.needsCompaction()) {
    const result = index.compact();
    console.log(`Removed ${result.tombstones_removed} tombstones`);
}
OperationTime ComplexityNotes
soft_delete()O(1)Set tombstone byte
is_deleted()O(1)Read tombstone byte
search()O(log n)Automatically excludes tombstones
compact()O(n log n)Full index rebuild

Β§Development Status

EdgeVec follows a military-grade development protocol. No code is written without an approved plan.

Β§βœ… Alpha Release Ready (v0.1.0)

All Performance Targets Exceeded:

  • βœ… Search Mean: 0.23ms (4.3x under 1ms target)
  • βœ… Search P99 (estimated): <600Β΅s (based on Mean + 2Οƒ)
  • βœ… Memory: 832 MB for 1M vectors (17% under 1GB target)
  • βœ… Bundle Size: 213 KB (57% under 500KB target)

What Works Now:

  • βœ… HNSW Indexing β€” Sub-millisecond search at 100k scale
  • βœ… Scalar Quantization (SQ8) β€” 3.6x memory reduction
  • βœ… SIMD Optimization β€” AVX2/FMA for 60-78% speedup
  • βœ… Crash Recovery (WAL) β€” Log-based replay
  • βœ… Atomic Snapshots β€” Safe background saving
  • βœ… Browser Integration β€” WASM Bindings + IndexedDB
  • βœ… npm Package β€” edgevec@0.3.0 published

Development Progress:

  • Phase 0: Environment Setup β€” βœ… COMPLETE
  • Phase 1: Architecture β€” βœ… COMPLETE
  • Phase 2: Planning β€” βœ… COMPLETE
  • Phase 3: Implementation β€” βœ… COMPLETE
  • Phase 4: WASM Integration β€” βœ… COMPLETE
  • Phase 5: Alpha Release β€” βœ… READY

Β§What’s Next (v0.4.0)

  1. Multi-vector Delete β€” Batch delete API
  2. P99 Tracking β€” Latency distribution metrics in CI
  3. ARM/NEON Optimization β€” Cross-platform SIMD verification
  4. Mobile Support β€” iOS Safari and Android Chrome formalized

Β§πŸ“Š Performance (Alpha Release)

Β§Search Latency (768-dimensional vectors, k=10)

ScaleFloat32Quantized (SQ8)TargetStatus
10k vectors203 Β΅s88 Β΅s<1 msβœ… 11x under
50k vectors480 Β΅s167 Β΅s<1 msβœ… 6x under
100k vectors572 Β΅s329 Β΅s<1 msβœ… 3x under

Note: Mean latencies from Criterion benchmarks (10 samples). Max observed: 622Β΅s (100k Float32). Outliers: 0-20% (mostly high mild/severe). P99 estimates are all <650Β΅s. See docs/benchmarks/ for full analysis.

Β§Memory Efficiency (768-dimensional vectors)

ModeMemory per Vector1M VectorsCompression
Float323,176 bytes3.03 GBBaseline
Quantized (SQ8)872 bytes832 MB3.6x smaller

Memory per vector includes: vector storage + HNSW graph overhead (node metadata + neighbor pool). Measured using index.memory_usage() + storage.memory_usage() after building 100k index.

Β§Bundle Size

PackageSize (Gzipped)TargetStatus
edgevec@0.3.0213 KB<500 KBβœ… 57% under

Β§Competitive Comparison (10k vectors, 128 dimensions)

LibrarySearch P50Insert P50TypeNotes
EdgeVec0.20ms0.83msWASMFastest WASM solution
hnswlib-node0.05ms1.56msNative C++Requires compilation
voy4.78ms0.03msWASMKD-tree, batch-only

EdgeVec is 24x faster than voy for search while both are pure WASM. Native bindings (hnswlib-node) are faster but require C++ compilation and don’t work in browsers.

Full competitive analysis β†’

Β§Key Advantages

  • βœ… Sub-millisecond search at 100k scale
  • βœ… Fastest pure-WASM solution β€” 24x faster than voy
  • βœ… Zero network latency β€” runs 100% locally (browser, Node, edge)
  • βœ… Privacy-preserving β€” no data leaves the device
  • βœ… Tiny bundle β€” 213 KB gzipped
  • βœ… No compilation required β€” unlike native bindings

Β§Test Environment

  • Hardware: AMD Ryzen 7 5700U, 16GB RAM
  • OS: Windows 11
  • Rust: 1.94.0-nightly (2025-12-05)
  • Criterion: 0.5.x
  • Compiler flags: -C target-cpu=native (AVX2 SIMD enabled)

Full benchmarks β†’


Β§Development Protocol

Β§The Agents

AgentRole
META_ARCHITECTSystem design, data layouts
PLANNERRoadmaps, weekly task plans
RUST_ENGINEERCore Rust implementation
WASM_SPECIALISTWASM bindings, browser integration
BENCHMARK_SCIENTISTPerformance testing
HOSTILE_REVIEWERQuality gate (has veto power)
DOCWRITERDocumentation, README

Β§Origins

EdgeVec builds upon lessons learned from binary_semantic_cache, a high-performance semantic caching library. Specifically:

Salvaged (MIT Licensed):

  • Hamming distance implementation (~10 lines)
  • Binary quantization math (~100 lines)

Built Fresh:

  • HNSW graph indexing
  • WASM-native architecture
  • IndexedDB persistence
  • Everything else

Β§Acknowledgments

  • Thanks to the Reddit community for identifying a potential alignment issue in the persistence layer, which led to improved safety via bytemuck in v0.2.1.
  • Thanks to the Hacker News community for feedback on competitive positioning and benchmarking.

Β§License

MIT β€” See LICENSE


Built with πŸ¦€ Rust + πŸ•ΈοΈ WebAssembly

Correctness by Construction

Re-exportsΒ§

pub use batch::BatchInsertable;
pub use error::BatchError;
pub use hnsw::HnswConfig;
pub use hnsw::HnswIndex;
pub use hnsw::SearchResult;
pub use metric::Metric;
pub use persistence::ChunkedWriter;
pub use quantization::BinaryQuantizer;
pub use quantization::QuantizedVector;
pub use quantization::QuantizerConfig;
pub use quantization::ScalarQuantizer;
pub use simd::capabilities;
pub use simd::warn_if_suboptimal;
pub use simd::SimdCapabilities;
pub use storage::VectorStorage;

ModulesΒ§

batch
Batch insertion API. Batch insertion API for HNSW indexes.
error
Unified error handling. Unified error hierarchy for EdgeVec.
hnsw
HNSW Graph implementation. HNSW module containing graph logic, configuration, and search.
metric
Distance metrics. Distance metrics for vector comparison.
persistence
Persistence and file format definitions. Persistence module for EdgeVec.
quantization
Quantization support. Quantization logic for vector compression.
simd
SIMD capability detection and runtime optimization. SIMD capability detection and runtime optimization.
storage
Vector storage. Vector Storage Module.
wasm
WASM bindings. WASM Bindings for EdgeVec.

ConstantsΒ§

VERSION
The crate version string.

FunctionsΒ§

version
Returns the crate version string.