Expand description
§EdgeVec
High-performance embedded vector database for Browser, Node, and Edge.
§Current Status
PHASE 3: Implementation (Week 7 Complete)
Status: Week 7 Complete — Persistence Hardened
Core vector storage, HNSW graph indexing, and full durability (WAL + Snapshots) are implemented and verified.
§Implemented Features
- HNSW Graph: Full insertion and search implementation with heuristic optimization.
- Vector Storage: Contiguous memory layout for fast access.
- Scalar Quantization (SQ8): 4x memory reduction (f32 -> u8) with high accuracy.
- Durability: Write-Ahead Log (WAL) with CRC32 checksums, crash recovery, and atomic snapshots.
- Metrics: L2 (Euclidean), Cosine, and Dot Product distance functions.
§Development Protocol
EdgeVec follows a military-grade development protocol:
- Architecture Phase — Design docs must be approved before planning
- Planning Phase — Roadmap must be approved before coding
- Implementation Phase — Weekly tasks must be approved before coding
- All gates require
HOSTILE_REVIEWERapproval
§Example
use edgevec::{HnswConfig, HnswIndex, Metric, VectorStorage};
// 1. Create Config
let config = HnswConfig::new(128);
// 2. Initialize Storage and Index
let mut storage = VectorStorage::new(&config, None);
let mut index = HnswIndex::new(config, &storage).expect("failed to create index");
// 3. Insert Vectors
let vector = vec![0.5; 128];
let id = index.insert(&vector, &mut storage).expect("failed to insert");
// 4. Search
let query = vec![0.5; 128];
let results = index.search(&query, 10, &storage).expect("failed to search");
assert!(!results.is_empty());
assert_eq!(results[0].vector_id, id);§Persistence Example
use edgevec::{HnswConfig, HnswIndex, VectorStorage};
use edgevec::persistence::{write_snapshot, read_snapshot, MemoryBackend};
// Create index and storage
let config = HnswConfig::new(128);
let mut storage = VectorStorage::new(&config, None);
let mut index = HnswIndex::new(config, &storage).expect("failed to create");
// Save snapshot using storage backend
let mut backend = MemoryBackend::new();
write_snapshot(&index, &storage, &mut backend).expect("failed to save");
// Load snapshot
let (loaded_index, loaded_storage) = read_snapshot(&backend).expect("failed to load");§Next Steps (Phase 5)
- Documentation: Finalize API docs.
- NPM Package: Release to npm registry.
- Performance: Final tuning and benchmarks.
§Documentation
§EdgeVec
The first WASM-native vector database. Binary quantization, metadata filtering, memory management — all in the browser.
EdgeVec is an embedded vector database built in Rust with first-class WebAssembly support. It brings server-grade vector database features to the browser: 32x memory reduction via binary quantization, metadata filtering, soft delete, persistence, and sub-millisecond search.
§Why EdgeVec?
| Feature | EdgeVec | hnswlib-wasm | Pinecone |
|---|---|---|---|
| Vector Search | Yes | Yes | Yes |
| Binary Quantization | Yes (32x) | No | No |
| Metadata Filtering | Yes | No | Yes |
| SQL-like Queries | Yes | No | Yes |
| Memory Pressure API | Yes | No | No |
| Soft Delete | Yes | No | Yes |
| Persistence | Yes | No | Yes |
| Browser-native | Yes | Yes | No |
| No server required | Yes | Yes | No |
| Offline capable | Yes | Yes | No |
EdgeVec is the only WASM vector database with binary quantization and filtered search.
§Quick Start
npm install edgevecimport init, { EdgeVec } from 'edgevec';
await init();
// Create index (768D for embeddings like OpenAI, Cohere)
const db = new EdgeVec({ dimensions: 768 });
// Insert vectors with metadata (v0.6.0)
const vector = new Float32Array(768).map(() => Math.random());
const id = db.insertWithMetadata(vector, {
category: "books",
price: 29.99,
inStock: true
});
// Search with filter expression (v0.6.0)
const query = new Float32Array(768).map(() => Math.random());
const results = db.searchFiltered(query, 'category = "books" AND price < 50', 10);
// Fast BQ search with rescoring — 32x less memory, 95% recall (v0.6.0)
const fastResults = db.searchBQ(query, 10);
// Monitor memory pressure (v0.6.0)
const pressure = db.getMemoryPressure();
if (pressure.level === 'warning') {
db.compact(); // Free deleted vectors
}§Interactive Demos
Try EdgeVec directly in your browser:
| Demo | Description |
|---|---|
| v0.6.0 Demo | BQ vs F32 comparison, metadata filtering, memory pressure |
| Filter Playground | Interactive filter syntax explorer with live parsing |
| Benchmark Dashboard | Performance comparison vs competitors |
| Soft Delete Demo | Tombstone-based deletion with compaction |
| Main Demo | Complete feature showcase |
# Run demos locally
git clone https://github.com/matte1782/edgevec.git
cd edgevec
python -m http.server 8080
# Open http://localhost:8080/wasm/examples/index.html§Performance
§Search Latency (768D vectors, k=10)
| Scale | EdgeVec | Target | Status |
|---|---|---|---|
| 10k vectors | 88 us | <1 ms | 11x under |
| 50k vectors | 167 us | <1 ms | 6x under |
| 100k vectors | 329 us | <1 ms | 3x under |
§Competitive Comparison (10k vectors, 128D)
| Library | Search P50 | Type | Notes |
|---|---|---|---|
| EdgeVec | 0.20 ms | WASM | Fastest WASM solution |
| hnswlib-node | 0.05 ms | Native C++ | Requires compilation |
| voy | 4.78 ms | WASM | k-d tree algorithm |
EdgeVec is 24x faster than voy for search while both are pure WASM.
§Bundle Size
| Package | Size (gzip) | Target | Status |
|---|---|---|---|
| edgevec | 217 KB | <500 KB | 57% under |
§Database Features
§Binary Quantization (v0.6.0)
32x memory reduction with minimal recall loss:
// BQ is auto-enabled for dimensions divisible by 8
const db = new EdgeVec({ dimensions: 768 });
// Raw BQ search (~85% recall, ~5x faster)
const bqResults = db.searchBQ(query, 10);
// BQ + rescore (~95% recall, ~3x faster)
const rescoredResults = db.searchBQRescored(query, 10, 5);| Mode | Memory (100k × 768D) | Speed | Recall@10 |
|---|---|---|---|
| F32 (baseline) | ~300 MB | 1x | 100% |
| BQ raw | ~10 MB | 5x | ~85% |
| BQ + rescore(5) | ~10 MB | 3x | ~95% |
§Metadata Filtering (v0.6.0)
Insert vectors with metadata, search with SQL-like filter expressions:
// Insert with metadata
db.insertWithMetadata(vector, {
category: "electronics",
price: 299.99,
tags: ["featured", "sale"]
});
// Search with filter
db.searchFiltered(query, 'category = "electronics" AND price < 500', 10);
db.searchFiltered(query, 'tags ANY ["featured"]', 10); // Array membership
// Complex expressions
db.searchFiltered(query,
'(category = "electronics" OR category = "books") AND price < 100',
10
);Operators: =, !=, >, <, >=, <=, AND, OR, NOT, ANY
Filter syntax documentation ->
§Memory Pressure API (v0.6.0)
Monitor and control WASM heap usage:
const pressure = db.getMemoryPressure();
// { level: 'normal', usedBytes: 52428800, totalBytes: 268435456, usagePercent: 19.5 }
if (pressure.level === 'warning') {
db.compact(); // Free deleted vectors
}
if (!db.canInsert()) {
console.warn('Memory critical, inserts blocked');
}§Soft Delete & Compaction
// O(1) soft delete
db.softDelete(id);
// Check status
console.log('Live:', db.liveCount());
console.log('Deleted:', db.deletedCount());
// Reclaim space when needed
if (db.needsCompaction()) {
const result = db.compact();
console.log(`Removed ${result.tombstones_removed} tombstones`);
}§Persistence
// Save to IndexedDB (browser) or filesystem
await db.save("my-vector-db");
// Load existing database
const db = await EdgeVec.load("my-vector-db");§Scalar Quantization
const config = new EdgeVecConfig(768);
config.quantized = true; // Enable SQ8 quantization
// 3.6x memory reduction: 3.03 GB -> 832 MB at 1M vectors§Rust Usage
use edgevec::{HnswConfig, HnswIndex, VectorStorage};
fn main() -> Result<(), Box<dyn std::error::Error>> {
let config = HnswConfig::new(768);
let mut storage = VectorStorage::new(&config, None);
let mut index = HnswIndex::new(config, &storage)?;
// Insert
let vector = vec![0.1; 768];
let id = index.insert(&vector, &mut storage)?;
// Search
let query = vec![0.1; 768];
let results = index.search(&query, 10, &storage)?;
// Soft delete
index.soft_delete(id)?;
Ok(())
}§Documentation
| Document | Description |
|---|---|
| Tutorial | Getting started guide |
| Filter Syntax | Complete filter expression reference |
| Database Operations | CRUD operations guide |
| Performance Tuning | HNSW parameter optimization |
| Migration Guide | Migrating from hnswlib, FAISS, Pinecone |
| Comparison | When to use EdgeVec vs alternatives |
§Limitations
EdgeVec is designed for client-side vector search. It is NOT suitable for:
- Billion-scale datasets — Browser memory limits apply (~1GB practical limit)
- Multi-user concurrent access — Single-user, single-tab design
- Distributed deployments — Runs locally only
For these use cases, consider Pinecone, Qdrant, or Weaviate.
§Version History
- v0.6.0 — Binary quantization (32x memory), metadata storage, memory pressure API
- v0.5.4 — iOS Safari compatibility fixes
- v0.5.3 — crates.io publishing fix (package size reduction)
- v0.5.2 — npm TypeScript compilation fix
- v0.5.0 — Metadata filtering with SQL-like syntax, Filter Playground demo
- v0.4.0 — Documentation sprint, benchmark dashboard, chaos testing
- v0.3.0 — Soft delete API, compaction, persistence format v3
- v0.2.0 — Scalar quantization (SQ8), SIMD optimization
- v0.1.0 — Initial release with HNSW indexing
§License
Licensed under either of:
- Apache License, Version 2.0 (LICENSE-APACHE)
- MIT license (LICENSE-MIT)
at your option.
Re-exports§
pub use batch::BatchInsertable;pub use error::BatchError;pub use hnsw::BatchDeleteError;pub use hnsw::BatchDeleteResult;pub use hnsw::HnswConfig;pub use hnsw::HnswIndex;pub use hnsw::SearchResult;pub use metric::Metric;pub use persistence::ChunkedWriter;pub use quantization::BinaryQuantizer;pub use quantization::QuantizedVector;pub use quantization::QuantizerConfig;pub use quantization::ScalarQuantizer;pub use simd::capabilities;pub use simd::detect_neon;pub use simd::select_backend;pub use simd::warn_if_suboptimal;pub use simd::SimdBackend;pub use simd::SimdCapabilities;pub use storage::VectorStorage;
Modules§
- batch
- Batch insertion API. Batch insertion API for HNSW indexes.
- error
- Unified error handling. Unified error hierarchy for EdgeVec.
- filter
- Filter expression parsing and evaluation. Filter expression module for EdgeVec.
- hnsw
- HNSW Graph implementation. HNSW module containing graph logic, configuration, and search.
- metadata
- Metadata storage for vector annotations. Metadata storage system for EdgeVec.
- metric
- Distance metrics. Distance metrics for vector comparison.
- persistence
- Persistence and file format definitions. Persistence module for EdgeVec.
- quantization
- Quantization support. Quantization logic for vector compression.
- simd
- SIMD capability detection and runtime optimization. SIMD capability detection and runtime optimization.
- storage
- Vector storage. Vector Storage Module.
- wasm
- WASM bindings. WASM Bindings for EdgeVec.
Constants§
- VERSION
- The crate version string.
Functions§
- version
- Returns the crate version string.