1use echo_state_network::*;
2use rand::prelude::*;
3
4const TRAIN_STEP: usize = 5000;
5const TEST_STEP: usize = 100;
6const N_X: u64 = 100;
7const BETA: f64 = 0.0;
8
9const RANDOM_SEED: u64 = 41;
10const TEST_RANDOM_SEED: u64 = 91;
11
12fn main() {
13 let (train_input, train_expected_output) = xor_data_gen(TRAIN_STEP, RANDOM_SEED);
14 let (test_input, test_expected_output) = xor_data_gen(TEST_STEP, TEST_RANDOM_SEED);
15
16 let path = format!("{}/examples/graph", env!("CARGO_MANIFEST_DIR"));
17
18 let n_u = train_input.first().unwrap().len() as u64;
19 let n_y = train_expected_output.first().unwrap().len() as u64;
20
21 let mut model = EchoStateNetwork::new(
22 n_u,
23 n_y,
24 N_X,
25 0.1,
26 1.0,
27 0.9,
28 |x| x.tanh(),
29 None,
30 None,
31 1.0,
32 |x| x.clone_owned(),
33 |x| x.clone_owned(),
34 false,
35 BETA,
36 );
37
38 model.offline_train(&train_input, &train_expected_output);
39
40 let mut estimated_output = vec![];
41 for input in test_input.iter() {
42 estimated_output.push(model.estimate(input));
43 }
44
45 let (bits_l2_error, bits_l1_error) =
46 get_bits_error_rate(estimated_output.clone(), test_expected_output.clone(), 2);
47 let (l2_error, l1_error) =
48 get_error_rate(estimated_output.clone(), test_expected_output.clone(), 2);
49 println!("Bits Mean Squared Error: {}", bits_l2_error);
50 println!("Bits Mean Absolute Error: {}", bits_l1_error);
51 println!("Mean Squared Error: {}", l2_error);
52 println!("Mean Absolute Error: {}", l1_error);
53
54 let y_estimated = estimated_output.iter().map(|x| x[0]).collect::<Vec<f64>>();
55 let y_expected = test_expected_output
56 .clone()
57 .into_iter()
58 .flatten()
59 .collect::<Vec<f64>>();
60
61 plotter::plot(
62 "XOR",
63 (0..TEST_STEP).map(|v| v as f64).collect::<Vec<f64>>(),
64 vec![y_expected, y_estimated],
65 vec!["Expected".to_string(), "Output".to_string()],
66 Some(&path),
67 )
68 .unwrap();
69
70 write_as_serde(
71 model,
72 &train_input,
73 &train_expected_output,
74 &test_input,
75 &test_expected_output,
76 estimated_output,
77 None,
78 );
79}
80
81fn xor_data_gen(step: usize, seed: u64) -> (Vec<Vec<f64>>, Vec<Vec<f64>>) {
82 let tau = 2;
83
84 let mut rng = rand::rngs::StdRng::seed_from_u64(seed);
85
86 let input_vec = (0..step)
87 .map(|_| vec![rng.gen_range(0..2) as f64])
88 .collect::<Vec<Vec<f64>>>();
89
90 let mut output_vec = vec![vec![0.0]; step];
91 for n in tau..step {
92 output_vec[n][0] = ((input_vec[n - 1][0] as u32) ^ (input_vec[n - 2][0] as u32)) as f64;
93 }
94
95 (input_vec, output_vec)
96}
97
98fn get_bits_error_rate(
99 estimated_output: Vec<Vec<f64>>,
100 expected_output: Vec<Vec<f64>>,
101 ignore_bits: usize,
102) -> (f64, f64) {
103 let mut y_tested_binary = vec![0.0; estimated_output.len()];
104
105 for (n, estimated) in estimated_output.iter().enumerate() {
106 if estimated[0] > 0.5 {
107 y_tested_binary[n] = 1.0;
108 } else {
109 y_tested_binary[n] = 0.0;
110 }
111 }
112
113 let expected_output = expected_output.into_iter().flatten().collect::<Vec<f64>>();
114
115 let mse = mean_squared_error(
116 &expected_output[ignore_bits..],
117 &y_tested_binary[ignore_bits..],
118 );
119 let mae = mean_absolute_error(
120 &expected_output[ignore_bits..],
121 &y_tested_binary[ignore_bits..],
122 );
123
124 (mse, mae)
125}
126
127fn get_error_rate(
128 estimated_output: Vec<Vec<f64>>,
129 expected_output: Vec<Vec<f64>>,
130 ignore_bits: usize,
131) -> (f64, f64) {
132 let estimated_output = estimated_output.iter().map(|x| x[0]).collect::<Vec<f64>>();
133 let expected_output = expected_output.into_iter().flatten().collect::<Vec<f64>>();
134
135 let mse = mean_squared_error(
136 &expected_output[ignore_bits..],
137 &estimated_output[ignore_bits..],
138 );
139 let mae = mean_absolute_error(
140 &expected_output[ignore_bits..],
141 &estimated_output[ignore_bits..],
142 );
143
144 (mse, mae)
145}