plot

Function plot 

Source
pub fn plot(
    name: &str,
    x: Vec<f64>,
    ys: Vec<Vec<f64>>,
    label: Vec<String>,
    path: Option<&str>,
) -> Result<(), Box<dyn Error>>
Expand description

Plot the graph of the given data. ‘name’ is the name of the file. ‘x’ is the x-axis data. ‘ys’ is the y-axis data. ‘label’ is the label of the data. ‘path’ is the path to save the graph.

Examples found in repository?
examples/narma.rs (lines 69-75)
19fn main() {
20    let (train_input, train_expected_output) =
21        narma_n_data_gen(TRAIN_STEP, RANDOM_SEED, NARMA_STEP);
22    let (test_input, test_expected_output) =
23        narma_n_data_gen(TEST_STEP, TEST_RANDOM_SEED, NARMA_STEP);
24
25    let path = format!("{}/examples/graph", env!("CARGO_MANIFEST_DIR"));
26
27    let n_u = train_input.first().unwrap().len() as u64;
28    let n_y = train_expected_output.first().unwrap().len() as u64;
29
30    let mut model = EchoStateNetwork::new(
31        n_u,
32        n_y,
33        N_X,
34        0.1,
35        1.0,
36        0.9,
37        |x| x.tanh(),
38        None,
39        None,
40        1.0,
41        |x| x.clone_owned(),
42        |x| x.clone_owned(),
43        false,
44        BETA,
45    );
46
47    model.offline_train(&train_input, &train_expected_output);
48
49    let mut estimated_output = vec![];
50    for input in test_input.iter() {
51        estimated_output.push(model.estimate(input));
52    }
53
54    let (l2_error, l1_error) = get_error_rate(
55        estimated_output.clone(),
56        test_expected_output.clone(),
57        NARMA_STEP,
58    );
59    println!("Mean Squared Error: {}", l2_error);
60    println!("Mean Absolute Error: {}", l1_error);
61
62    let y_estimated = estimated_output.iter().map(|x| x[0]).collect::<Vec<f64>>();
63    let y_expected = test_expected_output
64        .clone()
65        .into_iter()
66        .flatten()
67        .collect::<Vec<f64>>();
68
69    plotter::plot(
70        "NARMA",
71        (0..TEST_STEP).map(|v| v as f64).collect::<Vec<f64>>(),
72        vec![y_expected, y_estimated],
73        vec!["Expected".to_string(), "Estimated".to_string()],
74        Some(&path),
75    )
76    .unwrap();
77}
More examples
Hide additional examples
examples/xor.rs (lines 61-67)
12fn main() {
13    let (train_input, train_expected_output) = xor_data_gen(TRAIN_STEP, RANDOM_SEED);
14    let (test_input, test_expected_output) = xor_data_gen(TEST_STEP, TEST_RANDOM_SEED);
15
16    let path = format!("{}/examples/graph", env!("CARGO_MANIFEST_DIR"));
17
18    let n_u = train_input.first().unwrap().len() as u64;
19    let n_y = train_expected_output.first().unwrap().len() as u64;
20
21    let mut model = EchoStateNetwork::new(
22        n_u,
23        n_y,
24        N_X,
25        0.1,
26        1.0,
27        0.9,
28        |x| x.tanh(),
29        None,
30        None,
31        1.0,
32        |x| x.clone_owned(),
33        |x| x.clone_owned(),
34        false,
35        BETA,
36    );
37
38    model.offline_train(&train_input, &train_expected_output);
39
40    let mut estimated_output = vec![];
41    for input in test_input.iter() {
42        estimated_output.push(model.estimate(input));
43    }
44
45    let (bits_l2_error, bits_l1_error) =
46        get_bits_error_rate(estimated_output.clone(), test_expected_output.clone(), 2);
47    let (l2_error, l1_error) =
48        get_error_rate(estimated_output.clone(), test_expected_output.clone(), 2);
49    println!("Bits Mean Squared Error: {}", bits_l2_error);
50    println!("Bits Mean Absolute Error: {}", bits_l1_error);
51    println!("Mean Squared Error: {}", l2_error);
52    println!("Mean Absolute Error: {}", l1_error);
53
54    let y_estimated = estimated_output.iter().map(|x| x[0]).collect::<Vec<f64>>();
55    let y_expected = test_expected_output
56        .clone()
57        .into_iter()
58        .flatten()
59        .collect::<Vec<f64>>();
60
61    plotter::plot(
62        "XOR",
63        (0..TEST_STEP).map(|v| v as f64).collect::<Vec<f64>>(),
64        vec![y_expected, y_estimated],
65        vec!["Expected".to_string(), "Output".to_string()],
66        Some(&path),
67    )
68    .unwrap();
69
70    write_as_serde(
71        model,
72        &train_input,
73        &train_expected_output,
74        &test_input,
75        &test_expected_output,
76        estimated_output,
77        None,
78    );
79}