1use echo_state_network::*;
2use rand::prelude::*;
3
4const TRAIN_STEP: usize = 10000;
5const TEST_STEP: usize = 500;
6const N_X: u64 = 1000;
7const BETA: f64 = 0.1;
8
9const NARMA_ALPHA: f64 = 0.4;
10const NARMA_BETA: f64 = 0.1;
11const NARMA_GAMMA: f64 = 0.1;
12const NARMA_DELTA: f64 = 0.1;
13
14const NARMA_STEP: usize = 10;
15
16const RANDOM_SEED: u64 = 42;
17const TEST_RANDOM_SEED: u64 = 92;
18
19fn main() {
20 let (train_input, train_expected_output) =
21 narma_n_data_gen(TRAIN_STEP, RANDOM_SEED, NARMA_STEP);
22 let (test_input, test_expected_output) =
23 narma_n_data_gen(TEST_STEP, TEST_RANDOM_SEED, NARMA_STEP);
24
25 let path = format!("{}/examples/graph", env!("CARGO_MANIFEST_DIR"));
26
27 let n_u = train_input.first().unwrap().len() as u64;
28 let n_y = train_expected_output.first().unwrap().len() as u64;
29
30 let mut model = EchoStateNetwork::new(
31 n_u,
32 n_y,
33 N_X,
34 0.1,
35 1.0,
36 0.9,
37 |x| x.tanh(),
38 None,
39 None,
40 1.0,
41 |x| x.clone_owned(),
42 |x| x.clone_owned(),
43 false,
44 BETA,
45 );
46
47 model.offline_train(&train_input, &train_expected_output);
48
49 let mut estimated_output = vec![];
50 for input in test_input.iter() {
51 estimated_output.push(model.estimate(input));
52 }
53
54 let (l2_error, l1_error) = get_error_rate(
55 estimated_output.clone(),
56 test_expected_output.clone(),
57 NARMA_STEP,
58 );
59 println!("Mean Squared Error: {}", l2_error);
60 println!("Mean Absolute Error: {}", l1_error);
61
62 let y_estimated = estimated_output.iter().map(|x| x[0]).collect::<Vec<f64>>();
63 let y_expected = test_expected_output
64 .clone()
65 .into_iter()
66 .flatten()
67 .collect::<Vec<f64>>();
68
69 plotter::plot(
70 "NARMA",
71 (0..TEST_STEP).map(|v| v as f64).collect::<Vec<f64>>(),
72 vec![y_expected, y_estimated],
73 vec!["Expected".to_string(), "Estimated".to_string()],
74 Some(&path),
75 )
76 .unwrap();
77}
78
79fn narma_n_data_gen(step: usize, seed: u64, n: usize) -> (Vec<Vec<f64>>, Vec<Vec<f64>>) {
80 let mut rng = StdRng::seed_from_u64(seed);
81
82 let input_vec = (0..step)
83 .map(|_| vec![rng.gen_range(0.0..1.0)])
84 .collect::<Vec<Vec<f64>>>();
85
86 let mut output_vec = vec![vec![0.0]; step];
87
88 for i in n..step {
89 let mut state_sum = 0.0;
90 for j in 0..n {
91 state_sum += input_vec[i - j][0];
92 }
93 output_vec[i][0] = NARMA_ALPHA * output_vec[i - 1][0]
94 + NARMA_BETA * output_vec[i - 1][0] * state_sum
95 + NARMA_GAMMA * input_vec[i - n + 1][0] * input_vec[i - 1][0]
96 + NARMA_DELTA;
97 }
98
99 (input_vec, output_vec)
100}
101
102fn get_error_rate(
103 estimated_output: Vec<Vec<f64>>,
104 expected_output: Vec<Vec<f64>>,
105 ignore_bits: usize,
106) -> (f64, f64) {
107 let estimated_output = estimated_output.iter().map(|x| x[0]).collect::<Vec<f64>>();
108 let expected_output = expected_output.into_iter().flatten().collect::<Vec<f64>>();
109
110 let mse = mean_squared_error(
111 &expected_output[ignore_bits..],
112 &estimated_output[ignore_bits..],
113 );
114 let mae = mean_absolute_error(
115 &expected_output[ignore_bits..],
116 &estimated_output[ignore_bits..],
117 );
118
119 (mse, mae)
120}