ec_pairing/
lib.rs

1// Copyright (C) 2022-2023 Invers (JP) INC.
2// SPDX-License-Identifier: Apache-2.0
3
4// Licensed under the Apache License, Version 2.0 (the "License");
5// you may not use this file except in compliance with the License.
6// You may obtain a copy of the License at
7//
8// 	http://www.apache.org/licenses/LICENSE-2.0
9//
10// Unless required by applicable law or agreed to in writing, software
11// distributed under the License is distributed on an "AS IS" BASIS,
12// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13// See the License for the specific language governing permissions and
14// limitations under the License.
15
16#![no_std]
17#![doc = include_str!("../README.md")]
18
19use bls_12_381::params::{BLS_X, BLS_X_IS_NEGATIVE};
20use bls_12_381::{Fq12, Fr, G1Affine, G1Projective, G2Affine, G2PairingAffine, G2Projective, Gt};
21use jub_jub::EDWARDS_D;
22use zkstd::common::Vec;
23use zkstd::common::*;
24
25/// Tate pairing struct holds necessary components for pairing.
26/// `pairing` function takes G1 and G2 group elements and output
27/// GT target group element.
28#[derive(Debug, Clone, Eq, PartialEq, Ord, PartialOrd, Default, Encode, Decode, Copy)]
29pub struct TatePairing;
30
31impl Pairing for TatePairing {
32    type G1Affine = G1Affine;
33    type G2Affine = G2Affine;
34    type G1Projective = G1Projective;
35    type G2Projective = G2Projective;
36    type G2PairngRepr = G2PairingAffine;
37    type PairingRange = Fq12;
38    type Gt = Gt;
39    type ScalarField = Fr;
40    const PARAM_D: Fr = EDWARDS_D;
41    const X: u64 = BLS_X;
42    const X_IS_NEGATIVE: bool = BLS_X_IS_NEGATIVE;
43
44    fn pairing(g1: Self::G1Affine, g2: Self::G2Affine) -> Self::Gt {
45        Self::miller_loop(g1, g2).final_exp()
46    }
47
48    fn miller_loop(g1: Self::G1Affine, g2: Self::G2Affine) -> Self::PairingRange {
49        let mut acc = Self::PairingRange::one();
50        let mut g2_projective = Self::G2Projective::from(g2);
51        let mut found_one = false;
52
53        for i in (0..64).rev().map(|b| (((BLS_X >> 1) >> b) & 1) == 1) {
54            if !found_one {
55                found_one = i;
56                continue;
57            }
58
59            acc = acc.untwist(g2_projective.double_eval(), g1);
60
61            if i {
62                acc = acc.untwist(g2_projective.add_eval(g2), g1);
63            }
64
65            acc.square_assign();
66        }
67
68        acc = acc.untwist(g2_projective.double_eval(), g1);
69
70        if Self::X_IS_NEGATIVE {
71            acc.conjugate()
72        } else {
73            acc
74        }
75    }
76
77    fn multi_miller_loop(pairs: &[(Self::G1Affine, Self::G2PairngRepr)]) -> Self::PairingRange {
78        let pairs = pairs
79            .iter()
80            .filter(|(a, b)| !a.is_identity() && !b.is_identity())
81            .collect::<Vec<_>>();
82        let mut acc = Self::PairingRange::one();
83        let mut counter = 0;
84        let mut found_one = false;
85
86        for i in (0..64).rev().map(|b| (((BLS_X >> 1) >> b) & 1) == 1) {
87            if !found_one {
88                found_one = i;
89                continue;
90            }
91
92            for (g1, g2) in pairs.iter() {
93                acc = acc.untwist(g2.coeffs[counter], *g1);
94            }
95            counter += 1;
96
97            if i {
98                for (g1, g2) in pairs.iter() {
99                    acc = acc.untwist(g2.coeffs[counter], *g1);
100                }
101                counter += 1;
102            }
103
104            acc.square_assign();
105        }
106
107        for (g1, g2) in pairs {
108            acc = acc.untwist(g2.coeffs[counter], *g1);
109        }
110
111        if Self::X_IS_NEGATIVE {
112            acc.conjugate()
113        } else {
114            acc
115        }
116    }
117}