1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
// Copyright (C) 2022-2023 Invers (JP) INC.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#![no_std]
#![doc = include_str!("../README.md")]
use bls_12_381::params::{BLS_X, BLS_X_IS_NEGATIVE};
use bls_12_381::{Fq12, Fr, G1Affine, G1Projective, G2Affine, G2PairingAffine, G2Projective, Gt};
use jub_jub::{Fp, JubjubAffine, JubjubExtended};
use zkstd::common::*;
use zkstd::common::{G2Pairing, Group, Pairing, PairingRange, PrimeField, Ring, Vec};
// tate pairing with miller algorithm
#[derive(Debug, Clone, Eq, PartialEq, Default, Encode, Decode)]
pub struct TatePairing;
impl Pairing for TatePairing {
type G1Affine = G1Affine;
type G2Affine = G2Affine;
type G1Projective = G1Projective;
type G2Projective = G2Projective;
type JubjubAffine = JubjubAffine;
type JubjubExtended = JubjubExtended;
type G2PairngRepr = G2PairingAffine;
type PairingRange = Fq12;
type Gt = Gt;
type ScalarField = Fr;
type JubjubScalar = Fp;
const X: u64 = BLS_X;
const X_IS_NEGATIVE: bool = BLS_X_IS_NEGATIVE;
fn pairing(g1: Self::G1Affine, g2: Self::G2Affine) -> Self::Gt {
Self::miller_loop(g1, g2).final_exp()
}
fn miller_loop(g1: Self::G1Affine, g2: Self::G2Affine) -> Self::PairingRange {
let mut acc = Self::PairingRange::one();
let mut g2_projective = Self::G2Projective::from(g2);
let mut found_one = false;
for i in (0..64).rev().map(|b| (((BLS_X >> 1) >> b) & 1) == 1) {
if !found_one {
found_one = i;
continue;
}
acc = acc.untwist(g2_projective.double_eval(), g1);
if i {
acc = acc.untwist(g2_projective.add_eval(g2), g1);
}
acc.square_assign();
}
acc = acc.untwist(g2_projective.double_eval(), g1);
if Self::X_IS_NEGATIVE {
acc.conjugate()
} else {
acc
}
}
fn multi_miller_loop(pairs: &[(Self::G1Affine, Self::G2PairngRepr)]) -> Self::PairingRange {
let pairs = pairs
.iter()
.filter(|(a, b)| !a.is_identity() && !b.is_identity())
.collect::<Vec<_>>();
let mut acc = Self::PairingRange::one();
let mut counter = 0;
let mut found_one = false;
for i in (0..64).rev().map(|b| (((BLS_X >> 1) >> b) & 1) == 1) {
if !found_one {
found_one = i;
continue;
}
for (g1, g2) in pairs.iter() {
acc = acc.untwist(g2.coeffs[counter], *g1);
}
counter += 1;
if i {
for (g1, g2) in pairs.iter() {
acc = acc.untwist(g2.coeffs[counter], *g1);
}
counter += 1;
}
acc.square_assign();
}
for (g1, g2) in pairs {
acc = acc.untwist(g2.coeffs[counter], *g1);
}
if Self::X_IS_NEGATIVE {
acc.conjugate()
} else {
acc
}
}
}
/// Performs a Variable Base Multiscalar Multiplication.
pub fn msm_variable_base<P: Pairing>(
points: &[P::G1Affine],
scalars: &[P::ScalarField],
) -> P::G1Projective {
let c = if scalars.len() < 32 {
3
} else {
ln_without_floats(scalars.len()) + 2
};
let num_bits = 255usize;
let fr_one = P::ScalarField::one();
let zero = P::G1Projective::ADDITIVE_IDENTITY;
let window_starts_iter = (0..num_bits).step_by(c);
// Each window is of size `c`.
// We divide up the bits 0..num_bits into windows of size `c`, and
// in parallel process each such window.
let window_sums: Vec<_> = window_starts_iter
.map(|w_start| {
let mut res = zero;
// We don't need the "zero" bucket, so we only have 2^c - 1 buckets
let mut buckets = vec![zero; (1 << c) - 1];
scalars
.iter()
.zip(points)
.filter(|(s, _)| *s != &P::ScalarField::zero())
.for_each(|(&scalar, base)| {
if scalar == fr_one {
// We only process unit scalars once in the first window.
if w_start == 0 {
res += *base;
}
} else {
let mut scalar = scalar.reduce();
// We right-shift by w_start, thus getting rid of the
// lower bits.
scalar.divn(w_start as u32);
// We mod the remaining bits by the window size.
let scalar = scalar.mod_by_window(c);
// If the scalar is non-zero, we update the corresponding
// bucket.
// (Recall that `buckets` doesn't have a zero bucket.)
if scalar != 0 {
buckets[(scalar - 1) as usize] += *base;
}
}
});
let mut running_sum = P::G1Projective::ADDITIVE_IDENTITY;
for b in buckets.into_iter().rev() {
running_sum += b;
res += running_sum;
}
res
})
.collect();
// We store the sum for the lowest window.
let lowest = *window_sums.first().unwrap();
// We're traversing windows from high to low.
let x = window_sums[1..]
.iter()
.rev()
.fold(zero, |mut total, sum_i| {
total += *sum_i;
for _ in 0..c {
total = total.double();
}
total
})
+ lowest;
x
}
fn ln_without_floats(a: usize) -> usize {
// log2(a) * ln(2)
(log2(a) * 69 / 100) as usize
}
fn log2(x: usize) -> u32 {
if x <= 1 {
return 0;
}
let n = x.leading_zeros();
core::mem::size_of::<usize>() as u32 * 8 - n
}