1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
/*!
This crate is a minimal and simple-to-use elliptic curve library. This
library allows to perform the following operations over an elliptic curve
finite cyclic group:
- Point Addition: R = P + Q. P and Q are both points belonging to the group,
and the result R does it too.
- Point Doubling: R = P + P = 2 * P.
- Scalar Multiplication: R = d * P, we use the double-and-add algorithms
which combines point addition and doubling together. `d` can be any number.
The library could be use in any cryptographic algorithm that requires elliptic
curve groups, for example:
- Digital Signature Algorithm (DSA)
- Zero-Knowledge Proofs (ZKP)
# Usage
This crate is [on crates.io](https://crates.io/crates/regex) and can be
used by adding `regex` to your dependencies in your project's `Cargo.toml`.
```toml
[dependencies]
ec_generic = "0.1.2"
```
# Example: Define a elliptic curve `y^2 = x^3 + 2x + 2` and operate with it
```rust
use ec_generic::{EllipticCurve, Point};
use num_bigint::BigUint;
fn main() {
let ec = EllipticCurve {
a: BigUint::from(2u32),
b: BigUint::from(2u32),
p: BigUint::from(17u32),
};
// (6,3) + (5,1) = (10,6)
let p1 = Point::Coor(BigUint::from(6u32), BigUint::from(3u32));
let p2 = Point::Coor(BigUint::from(5u32), BigUint::from(1u32));
let pr = Point::Coor(BigUint::from(10u32), BigUint::from(6u32));
let res = ec.add(&p1, &p2);
assert_eq!(res, pr);
let res = ec.add(&p2, &p1);
assert_eq!(res, pr);
}
```
# Example: Define a `secp256k1` elliptic curve `y^2 = x^3 + 7` and operate with it
```rust
use ec_generic::{EllipticCurve, Point};
use num_bigint::BigUint;
fn main() {
let p = BigUint::parse_bytes(
b"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F",
16,
)
.expect("could not convert p");
let n = BigUint::parse_bytes(
b"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141",
16,
)
.expect("could not convert n");
let gx = BigUint::parse_bytes(
b"79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798",
16,
)
.expect("could not convert gx");
let gy = BigUint::parse_bytes(
b"483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8",
16,
)
.expect("could not convert gy");
let ec = EllipticCurve {
a: BigUint::from(0u32),
b: BigUint::from(7u32),
p,
};
let g = Point::Coor(gx, gy);
// n * G = I (Identity)
let res = ec.scalar_mul(&g, &n);
assert_eq!(res, Point::Identity);
}
```
*/
use num_bigint::BigUint;
#[derive(PartialEq, Clone, Debug)]
pub enum Point {
Coor(BigUint, BigUint),
Identity,
}
#[derive(PartialEq, Clone, Debug)]
pub struct EllipticCurve {
// y^2 = x^2 + a * x + b
pub a: BigUint,
pub b: BigUint,
pub p: BigUint,
}
impl EllipticCurve {
///
/// Perform a point addition: C = A + B where A and B are points which
/// belong to the curve. Geometrically speaking, the point C is the
/// x-reflection of the intersection of the lines that passes through A and
/// B and intersects the curve.
///
pub fn add(&self, c: &Point, d: &Point) -> Point {
assert!(self.is_on_curve(c), "Point is not in curve");
assert!(self.is_on_curve(d), "Point is not in curve");
assert!(*c != *d, "Points should not be the same");
match (c, d) {
(Point::Identity, _) => d.clone(),
(_, Point::Identity) => c.clone(),
(Point::Coor(x1, y1), Point::Coor(x2, y2)) => {
// Check that they are not additive inverses
let y1plusy2 = FiniteField::add(&y1, &y2, &self.p);
if x1 == x2 && y1plusy2 == BigUint::from(0u32) {
return Point::Identity;
}
// s = (y2 - y1) / (x2 - x1) mod p
// x3 = s^2 - x1 - x2 mod p
// y3 = s(x1 - x3) - y1 mod p
let numerator = FiniteField::subtract(y2, y1, &self.p);
let denominator = FiniteField::subtract(x2, x1, &self.p);
let s = FiniteField::divide(&numerator, &denominator, &self.p);
let (x3, y3) = self.compute_x3_y3(&x1, &y1, &x2, &s);
Point::Coor(x3, y3)
}
}
}
///
/// Perform a point doubling: B = A + A = 2 * A where A is a point in the
/// curve. Geometrically speaking, the point B is the intersection of the
/// tangent line over A that intersects the curve.
///
pub fn double(&self, c: &Point) -> Point {
assert!(self.is_on_curve(c), "Point is not in curve");
match c {
Point::Identity => Point::Identity,
Point::Coor(x1, y1) => {
// s = (3 * x1^2 + a) / (2 * y1) mod p
// x3 = s^2 - 2 * x1 mod p
// y3 = s(x1 - x3) - y1 mod p
let numerator = x1.modpow(&BigUint::from(2u32), &self.p);
let numerator = FiniteField::mult(&BigUint::from(3u32), &numerator, &self.p);
let numerator = FiniteField::add(&self.a, &numerator, &self.p);
let denominator = FiniteField::mult(&BigUint::from(2u32), y1, &self.p);
let s = FiniteField::divide(&numerator, &denominator, &self.p);
let (x3, y3) = self.compute_x3_y3(&x1, &y1, &x1, &s);
Point::Coor(x3, y3)
}
}
}
fn compute_x3_y3(
&self,
x1: &BigUint,
y1: &BigUint,
x2: &BigUint,
s: &BigUint,
) -> (BigUint, BigUint) {
// x3 = s^2 - x1 - x2 mod p
// y3 = s(x1 - x3) - y1 mod p
let s2 = s.modpow(&BigUint::from(2u32), &self.p);
let x3 = FiniteField::subtract(&s2, x1, &self.p);
let x3 = FiniteField::subtract(&x3, x2, &self.p);
let y3 = FiniteField::subtract(x1, &x3, &self.p);
let y3 = FiniteField::mult(&s, &y3, &self.p);
let y3 = FiniteField::subtract(&y3, &y1, &self.p);
assert!(x3 < self.p, "{} >= {}", x3, &self.p);
assert!(y3 < self.p, "{} >= {}", y3, &self.p);
(x3, y3)
}
///
/// Perform a scalar multiplication of a point: B = d * A where A is a point
/// in the curve and d is a positive scalar of any value.
///
/// It uses the addition/doubling algorithm - B = d * A:
///
/// T = A
/// for i in range(bits of d - 1, 0)
/// T = 2 * T
/// if bit i of d == 1
/// T = T + A
///
pub fn scalar_mul(&self, c: &Point, d: &BigUint) -> Point {
let mut t = c.clone();
for i in (0..(d.bits() - 1)).rev() {
t = self.double(&t);
if d.bit(i) {
t = self.add(&t, c);
}
}
t
}
pub fn is_on_curve(&self, c: &Point) -> bool {
match c {
Point::Coor(x, y) => {
// y^2 = x^3 + a * x + b
let y2 = y.modpow(&BigUint::from(2u32), &self.p);
let x3 = x.modpow(&BigUint::from(3u32), &self.p);
let ax = FiniteField::mult(&self.a, x, &self.p);
let x3plusax = FiniteField::add(&x3, &ax, &self.p);
y2 == FiniteField::add(&x3plusax, &self.b, &self.p)
}
Point::Identity => true,
}
}
}
struct FiniteField {}
impl FiniteField {
fn add(c: &BigUint, d: &BigUint, p: &BigUint) -> BigUint {
// c + d = r mod p
assert!(c < p, "{c} >= {p}");
assert!(d < p, "{d} >= {p}");
let r = c + d;
r.modpow(&BigUint::from(1u32), p)
}
fn mult(c: &BigUint, d: &BigUint, p: &BigUint) -> BigUint {
// c * d = r mod p
assert!(c < p, "{c} >= {p}");
assert!(d < p, "{d} >= {p}");
let r = c * d;
r.modpow(&BigUint::from(1u32), p)
}
fn inv_addition(c: &BigUint, p: &BigUint) -> BigUint {
// -c mod p
assert!(c < p, "{c} >= {p}");
p - c
}
fn subtract(c: &BigUint, d: &BigUint, p: &BigUint) -> BigUint {
// c - d mod p
assert!(c < p, "{c} >= {p}");
assert!(d < p, "{d} >= {p}");
let d_inv = FiniteField::inv_addition(d, p);
assert!(d_inv < p.clone(), "{d_inv} >= {p}");
FiniteField::add(c, &d_inv, p)
}
// TODO: this function uses Fermat's Little Theorem and thus it is only
// valid for a p prime only for p prime
fn inv_multiplication(c: &BigUint, p: &BigUint) -> BigUint {
// c^(-1) mod p = c^(p-2) mod p
assert!(c < p, "{c} >= {p}");
c.modpow(&(p - BigUint::from(2u32)), p)
}
fn divide(c: &BigUint, d: &BigUint, p: &BigUint) -> BigUint {
assert!(c < p, "{c} >= {p}");
assert!(d < p, "{d} >= {p}");
let d_inv = FiniteField::inv_multiplication(d, p);
assert!(d_inv < p.clone(), "{c} >= {p}");
FiniteField::mult(c, &d_inv, p)
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_add_1() {
let c = BigUint::from(4u32);
let d = BigUint::from(10u32);
let p = BigUint::from(11u32);
let r = FiniteField::add(&c, &d, &p);
assert_eq!(r, BigUint::from(3u32));
}
#[test]
fn test_add_result_0() {
let c = BigUint::from(10u32);
let d = BigUint::from(1u32);
let p = BigUint::from(11u32);
let r = FiniteField::add(&c, &d, &p);
assert_eq!(r, BigUint::from(0u32));
}
#[test]
fn test_add_2() {
let c = BigUint::from(4u32);
let d = BigUint::from(10u32);
let p = BigUint::from(31u32);
let r = FiniteField::add(&c, &d, &p);
assert_eq!(r, BigUint::from(14u32));
}
#[test]
fn test_mul_1() {
let c = BigUint::from(4u32);
let d = BigUint::from(10u32);
let p = BigUint::from(11u32);
let r = FiniteField::mult(&c, &d, &p);
assert_eq!(r, BigUint::from(7u32));
}
#[test]
fn test_mul_2() {
let c = BigUint::from(4u32);
let d = BigUint::from(10u32);
let p = BigUint::from(51u32);
let r = FiniteField::mult(&c, &d, &p);
assert_eq!(r, BigUint::from(40u32));
}
#[test]
fn test_inv_addition_1() {
let c = BigUint::from(4u32);
let p = BigUint::from(51u32);
let r = FiniteField::inv_addition(&c, &p);
assert_eq!(r, BigUint::from(47u32));
}
#[test]
#[should_panic]
fn test_inv_addition_2() {
let c = BigUint::from(52u32);
let p = BigUint::from(51u32);
FiniteField::inv_addition(&c, &p);
}
#[test]
fn test_inv_addition_identity() {
let c = BigUint::from(4u32);
let p = BigUint::from(51u32);
let c_inv = FiniteField::inv_addition(&c, &p);
assert_eq!(c_inv, BigUint::from(47u32));
assert_eq!(FiniteField::add(&c, &c_inv, &p), BigUint::from(0u32));
}
#[test]
fn test_substract() {
let c = BigUint::from(4u32);
let p = BigUint::from(51u32);
assert_eq!(FiniteField::subtract(&c, &c, &p), BigUint::from(0u32));
}
#[test]
fn test_inv_multiplication_identity() {
let c = BigUint::from(4u32);
let p = BigUint::from(11u32);
let c_inv = FiniteField::inv_multiplication(&c, &p);
// 4 * 3 mod 11 = 12 mod 11 = 1
assert_eq!(c_inv, BigUint::from(3u32));
assert_eq!(FiniteField::mult(&c, &c_inv, &p), BigUint::from(1u32));
}
#[test]
fn test_divide() {
let c = BigUint::from(4u32);
let p = BigUint::from(11u32);
assert_eq!(FiniteField::divide(&c, &c, &p), BigUint::from(1u32));
}
#[test]
fn test_ec_point_addition() {
// y^2 = x^3 + 2x + 2 mod 17
let ec = EllipticCurve {
a: BigUint::from(2u32),
b: BigUint::from(2u32),
p: BigUint::from(17u32),
};
// (6,3) + (5,1) = (10,6)
let p1 = Point::Coor(BigUint::from(6u32), BigUint::from(3u32));
let p2 = Point::Coor(BigUint::from(5u32), BigUint::from(1u32));
let pr = Point::Coor(BigUint::from(10u32), BigUint::from(6u32));
let res = ec.add(&p1, &p2);
assert_eq!(res, pr);
let res = ec.add(&p2, &p1);
assert_eq!(res, pr);
}
#[test]
fn test_ec_point_addition_identity() {
// y^2 = x^3 + 2x + 2 mod 17
let ec = EllipticCurve {
a: BigUint::from(2u32),
b: BigUint::from(2u32),
p: BigUint::from(17u32),
};
// (6,3) + (5,1) = (10,6)
let p1 = Point::Coor(BigUint::from(6u32), BigUint::from(3u32));
let p2 = Point::Identity;
let pr = p1.clone();
let res = ec.add(&p1, &p2);
assert_eq!(res, pr);
let res = ec.add(&p2, &p1);
assert_eq!(res, pr);
}
#[test]
fn test_ec_point_addition_reflected_in_x() {
// y^2 = x^3 + 2x + 2 mod 17
let ec = EllipticCurve {
a: BigUint::from(2u32),
b: BigUint::from(2u32),
p: BigUint::from(17u32),
};
// (5,16) + (5,1) = Point::Identity
let p1 = Point::Coor(BigUint::from(5u32), BigUint::from(16u32));
let p2 = Point::Coor(BigUint::from(5u32), BigUint::from(1u32));
let pr = Point::Identity;
let res = ec.add(&p1, &p2);
assert_eq!(res, pr);
let res = ec.add(&p2, &p1);
assert_eq!(res, pr);
}
#[test]
fn test_ec_point_doubling() {
// y^2 = x^3 + 2x + 2 mod 17
let ec = EllipticCurve {
a: BigUint::from(2u32),
b: BigUint::from(2u32),
p: BigUint::from(17u32),
};
// (5,1) + (5,1) = 2 (5, 1) = (6,3)
let p1 = Point::Coor(BigUint::from(5u32), BigUint::from(1u32));
let pr = Point::Coor(BigUint::from(6u32), BigUint::from(3u32));
let res = ec.double(&p1);
assert_eq!(res, pr);
}
#[test]
fn test_ec_point_doubling_identity() {
// y^2 = x^3 + 2x + 2 mod 17
let ec = EllipticCurve {
a: BigUint::from(2u32),
b: BigUint::from(2u32),
p: BigUint::from(17u32),
};
// I + I = 2 I = I
let p1 = Point::Identity;
let pr = Point::Identity;
let res = ec.double(&p1);
assert_eq!(res, pr);
}
#[test]
fn test_ec_scalar_multiplication() {
// y^2 = x^3 + 2x + 2 mod 17 |G| = 19 19 * A = I
let ec = EllipticCurve {
a: BigUint::from(2u32),
b: BigUint::from(2u32),
p: BigUint::from(17u32),
};
let c = Point::Coor(BigUint::from(5u32), BigUint::from(1u32));
// 2 (5, 1) = (6,3)
let pr = Point::Coor(BigUint::from(6u32), BigUint::from(3u32));
let res = ec.scalar_mul(&c, &BigUint::from(2u32));
assert_eq!(res, pr);
// 10 (5, 1) = (7,11)
let pr = Point::Coor(BigUint::from(7u32), BigUint::from(11u32));
let res = ec.scalar_mul(&c, &BigUint::from(10u32));
assert_eq!(res, pr);
// 16 (5, 1) = (10,11)
let pr = Point::Coor(BigUint::from(10u32), BigUint::from(11u32));
let res = ec.scalar_mul(&c, &BigUint::from(16u32));
assert_eq!(res, pr);
// 17 (5, 1) = (6,14)
let pr = Point::Coor(BigUint::from(6u32), BigUint::from(14u32));
let res = ec.scalar_mul(&c, &BigUint::from(17u32));
assert_eq!(res, pr);
// 18 (5, 1) = (5,16)
let pr = Point::Coor(BigUint::from(5u32), BigUint::from(16u32));
let res = ec.scalar_mul(&c, &BigUint::from(18u32));
assert_eq!(res, pr);
// 19 (5, 1) = I
let pr = Point::Identity;
let res = ec.scalar_mul(&c, &BigUint::from(19u32));
assert_eq!(res, pr);
}
#[test]
fn test_ec_secp256k1() {
/*
y^2 = x^3 + 7
p = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F
n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141
G = (
x = 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798,
y = 483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419 9C47D08F FB10D4B8
)
a = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
b = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000007
*/
// n * G = I
let p = BigUint::parse_bytes(
b"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F",
16,
)
.expect("could not convert p");
let n = BigUint::parse_bytes(
b"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141",
16,
)
.expect("could not convert n");
let gx = BigUint::parse_bytes(
b"79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798",
16,
)
.expect("could not convert gx");
let gy = BigUint::parse_bytes(
b"483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8",
16,
)
.expect("could not convert gy");
let ec = EllipticCurve {
a: BigUint::from(0u32),
b: BigUint::from(7u32),
p,
};
let g = Point::Coor(gx, gy);
let res = ec.scalar_mul(&g, &n); // n * G
assert_eq!(res, Point::Identity);
}
#[test]
fn test_bits() {
let a = BigUint::from(2u32);
assert!(!a.bit(0));
assert!(a.bit(1));
}
}