1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
//! A simple tree structure library for Rust.
//!
//! This library provides a basic implementation of a tree structure where each node can have multiple children and a single parent.
//!
//! # Examples
//!
//! ```
//! use easy_tree::Tree;
//!
//! // Create a new tree and add nodes
//! let mut tree = Tree::new();
//! let root = tree.add_node(0); // Root node with data 0
//! let child1 = tree.add_child(root, 1); // Child node with data 1
//! let child2 = tree.add_child(root, 2); // Child node with data 2
//! let child3 = tree.add_child(child1, 3); // Child node with data 3
//!
//! // Access nodes and their relationships
//! assert_eq!(tree.get(root), Some(&0));
//! assert_eq!(tree.get(child1), Some(&1));
//! assert_eq!(tree.get(child2), Some(&2));
//! assert_eq!(tree.get(child3), Some(&3));
//!
//! assert_eq!(tree.parent_index_unchecked(child1), Some(root));
//! assert_eq!(tree.parent_index_unchecked(child2), Some(root));
//! assert_eq!(tree.parent_index_unchecked(child3), Some(child1));
//!
//! assert_eq!(tree.children(root), &[child1, child2]);
//! assert_eq!(tree.children(child1), &[child3]);
//! assert_eq!(tree.children(child2), &[]);
//! assert_eq!(tree.children(child3), &[]);
//! ```
//!
//! ```
//! use easy_tree::Tree;
//!
//! // Create a new tree and add nodes
//! let mut tree = Tree::new();
//! let root = tree.add_node(0); // Root node with data 0
//! let child1 = tree.add_child(root, 1); // Child node with data 1
//! let child2 = tree.add_child(root, 2); // Child node with data 2
//! let child3 = tree.add_child(child1, 3); // Child node with data 3
//!
//! // Iterate over the nodes in the tree
//! for (index, data) in tree.iter() {
//! println!("Node {}: {}", index, data);
//! }
//!
//! // Iterate over the nodes in the tree mutably
//! for (index, data) in tree.iter_mut() {
//! *data += 1;
//! }
//!
//! // Check the modified values
//! assert_eq!(tree.get(root), Some(&1));
//! assert_eq!(tree.get(child1), Some(&2));
//! assert_eq!(tree.get(child2), Some(&3));
//! assert_eq!(tree.get(child3), Some(&4));
//! ```
#[cfg(feature = "rayon")]
pub use rayon;
#[cfg(feature = "rayon")]
use rayon::prelude::*;
#[derive(Clone)]
/// A node in the tree containing data and references to its parent and children.
pub struct Node<T> {
data: T,
children: Vec<usize>,
parent: Option<usize>,
}
impl<T> Node<T> {
/// Creates a new node with the given data.
pub fn new(data: T) -> Self {
Self {
data,
children: Vec::new(),
parent: None,
}
}
pub(crate) fn add_child(&mut self, child: usize) {
self.children.push(child);
}
pub(crate) fn set_parent(&mut self, parent: usize) {
self.parent = Some(parent);
}
}
#[derive(Clone)]
/// A tree structure containing nodes.
pub struct Tree<T> {
nodes: Vec<Node<T>>,
}
impl<T> Default for Tree<T> {
fn default() -> Self {
Self::new()
}
}
impl<T> Tree<T> {
/// Creates a new empty tree.
pub fn new() -> Self {
Self { nodes: Vec::new() }
}
/// Adds a new node with the given data to the tree and returns its index. The nodes
/// added with this method will be disconnected from the tree, so use it only for the root node.
/// For adding children, use the `add_child` method.
pub fn add_node(&mut self, data: T) -> usize {
let node = Node::new(data);
let index = self.nodes.len();
self.nodes.push(node);
index
}
/// Adds a child node with the given data to the specified parent node and returns the child's
/// index.
pub fn add_child(&mut self, parent: usize, data: T) -> usize {
let index = self.add_node(data);
self.nodes[parent].add_child(index);
self.nodes[index].set_parent(parent);
index
}
/// Adds a child node with the given data to the root node and returns the child's index.
pub fn add_child_to_root(&mut self, data: T) -> usize {
self.add_child(0, data)
}
/// Returns a reference to the data of the node at the given index, or `None` if the index is
/// out of bounds.
pub fn get(&self, index: usize) -> Option<&T> {
self.nodes.get(index).map(|node| &node.data)
}
#[inline(always)]
/// Returns a reference to the data of the node at the given index without bounds checking.
pub fn get_unchecked(&self, index: usize) -> &T {
&self.nodes[index].data
}
/// Returns a mutable reference to the data of the node at the given index, or `None` if the
/// index is out of bounds.
pub fn get_mut(&mut self, index: usize) -> Option<&mut T> {
self.nodes.get_mut(index).map(|node| &mut node.data)
}
#[inline(always)]
/// Returns a mutable reference to the data of the node at the given index without bounds
/// checking.
pub fn get_unchecked_mut(&mut self, index: usize) -> &mut T {
&mut self.nodes[index].data
}
/// Returns the index of the parent node of the node at the given index, or `None` if the node
/// has no parent.
pub fn parent_index_unchecked(&self, index: usize) -> Option<usize> {
self.nodes[index].parent
}
/// Returns a slice of the indices of the children of the node at the given index.
pub fn children(&self, index: usize) -> &[usize] {
&self.nodes[index].children
}
/// Walks the tree recursively, applying the given functions before and after processing the
/// children of each node.
pub fn traverse<'a, S>(
&'a self,
mut before_processing_children: impl FnMut(usize, &'a T, &mut S),
mut after_processing_the_subtree: impl FnMut(usize, &'a T, &mut S),
s: &mut S,
) {
let mut stack = vec![(0, false)];
while let Some((index, children_visited)) = stack.pop() {
if children_visited {
// All children are processed, call f2
let node = &self.nodes[index];
after_processing_the_subtree(index, &node.data, s);
} else {
// Call f and mark this node's children for processing
let node = &self.nodes[index];
before_processing_children(index, &node.data, s);
// Re-push the current node with children_visited set to true
stack.push((index, true));
// Push all children onto the stack
for &child in node.children.iter().rev() {
stack.push((child, false));
}
}
}
}
/// Returns an iterator over the indices and data of the nodes in the tree.
pub fn iter(&self) -> impl Iterator<Item = (usize, &T)> {
self.nodes
.iter()
.enumerate()
.map(|(index, node)| (index, &node.data))
}
/// Returns a mutable iterator over the indices and data of the nodes in the tree.
pub fn iter_mut(&mut self) -> impl Iterator<Item = (usize, &mut T)> {
self.nodes
.iter_mut()
.enumerate()
.map(|(index, node)| (index, &mut node.data))
}
/// Returns `true` if the tree contains no nodes.
pub fn is_empty(&self) -> bool {
self.nodes.is_empty()
}
/// Returns the number of nodes in the tree.
pub fn len(&self) -> usize {
self.nodes.len()
}
/// Removes all nodes from the tree.
pub fn clear(&mut self) {
self.nodes.clear();
}
}
#[cfg(feature = "rayon")]
impl<T: Send + Sync> Tree<T> {
#[cfg(feature = "rayon")]
/// Returns a parallel iterator over the indices and data of the nodes in the tree.
pub fn par_iter(&self) -> impl ParallelIterator<Item = (usize, &T)> {
self.nodes
.par_iter()
.enumerate()
.map(|(index, node)| (index, &node.data))
}
#[cfg(feature = "rayon")]
/// Returns a mutable parallel iterator over the indices and data of the nodes in the tree.
pub fn par_iter_mut(&mut self) -> impl ParallelIterator<Item = (usize, &mut T)> {
self.nodes
.par_iter_mut()
.enumerate()
.map(|(index, node)| (index, &mut node.data))
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_tree() {
let mut tree = Tree::new();
let root = tree.add_node(0);
let child1 = tree.add_child(root, 1);
let child2 = tree.add_child(root, 2);
let child3 = tree.add_child(child1, 3);
assert_eq!(tree.get(root), Some(&0));
assert_eq!(tree.get(child1), Some(&1));
assert_eq!(tree.get(child2), Some(&2));
assert_eq!(tree.get(child3), Some(&3));
assert_eq!(tree.parent_index_unchecked(child1), Some(root));
assert_eq!(tree.parent_index_unchecked(child2), Some(root));
assert_eq!(tree.parent_index_unchecked(child3), Some(child1));
assert_eq!(tree.children(root), &[child1, child2]);
assert_eq!(tree.children(child1), &[child3]);
assert_eq!(tree.children(child2), &[]);
assert_eq!(tree.children(child3), &[]);
}
#[test]
fn test_tree_iter() {
let mut tree = Tree::new();
let root = tree.add_node(0);
let child1 = tree.add_child(root, 1);
let child2 = tree.add_child(root, 2);
let child3 = tree.add_child(child1, 3);
let mut iter = tree.iter();
assert_eq!(iter.next(), Some((root, &0)));
assert_eq!(iter.next(), Some((child1, &1)));
assert_eq!(iter.next(), Some((child2, &2)));
assert_eq!(iter.next(), Some((child3, &3)));
assert_eq!(iter.next(), None);
}
#[test]
fn test_tree_iter_mut() {
let mut tree = Tree::new();
let root = tree.add_node(0);
let child1 = tree.add_child(root, 1);
let child2 = tree.add_child(root, 2);
let child3 = tree.add_child(child1, 3);
let mut iter = tree.iter_mut();
assert_eq!(iter.next(), Some((root, &mut 0)));
assert_eq!(iter.next(), Some((child1, &mut 1)));
assert_eq!(iter.next(), Some((child2, &mut 2)));
assert_eq!(iter.next(), Some((child3, &mut 3)));
assert_eq!(iter.next(), None);
}
#[test]
fn test_tree_traverse() {
let mut tree = Tree::new();
let root = tree.add_node(0); // Root node with data 0
let child1 = tree.add_child(root, 1); // Child node with data 1
let _child2 = tree.add_child(root, 2); // Child node with data 2
let _child3 = tree.add_child(child1, 3); // Child node with data 3
let mut result = vec![];
tree.traverse(
|index, node, result| {
result.push(format!("Calling handler for node {}: {}", index, node))
},
|index, _node, result| {
result.push(format!(
"Finished handling node {} and all it's children",
index
))
},
&mut result,
);
assert_eq!(
result,
vec![
"Calling handler for node 0: 0",
"Calling handler for node 1: 1",
"Calling handler for node 3: 3",
"Finished handling node 3 and all it's children",
"Finished handling node 1 and all it's children",
"Calling handler for node 2: 2",
"Finished handling node 2 and all it's children",
"Finished handling node 0 and all it's children",
]
);
}
}