1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
/*!
* Generic views into a matrix.
*
* The concept of a view into a matrix is built from the low level [MatrixRef](MatrixRef) and
* [MatrixMut](MatrixMut) traits which define having read and read/write access to Matrix data
* respectively, and the high level API implemented on the [MatrixView](MatrixView) struct.
*
* Since a Matrix is itself a MatrixRef, the APIs for the traits are purposefully verbose to
* avoid name clashes with methods defined on the Matrix and MatrixView types. You should
* typically use MatrixRef and MatrixMut implementations via the MatrixView struct which provides
* an API closely resembling Matrix.
*
* # Examples
*
* [Using trait objects with MatrixViews](erased)
*/
use std::marker::PhantomData;
use crate::matrices::iterators::*;
use crate::matrices::{Column, Matrix, Row};
pub mod erased;
mod partitions;
mod ranges;
pub mod traits;
pub use partitions::*;
pub use ranges::*;
/**
* A shared/immutable reference to a matrix (or a portion of it) of some type.
*
* # Indexing
*
* Valid indexes into a MatrixRef range from 0 inclusive to `view_rows` exclusive for rows and
* from 0 inclusive to `view_columns` exclusive for columns. Even if a 4x4 matrix creates some
* 2x2 MatrixRef that can view only its center, the indexes used on the MatrixRef would be
* 0,0 to 1,1, not 1,1 to 2,2 as corresponding on the matrix.
*
* # Safety
*
* In order to support returning references without bounds checking in a useful way, the
* implementing type is required to uphold several invariants.
*
* 1 - Any valid index as described in Indexing will yield a safe reference when calling
* `get_reference_unchecked` and `get_reference_unchecked_mut`.
*
* 2 - Either the `view_rows`/`view_columns` that define which indexes are valid may not
* be changed by a shared reference to the MatrixRef implementation, or `get_reference_unchecked`
* and `get_reference_unchecked_mut` must panic if the index is invalid.
*
* If a type implements both MatrixRef and [`NoInteriorMutability`](NoInteriorMutability) #2
* becomes just 'the `view_rows`/`view_columns` that define which indexes are valid may not
* be changed by a shared reference to the MatrixRef implementation'. ie, the matrix
* may not be resized while a mutable reference is held to it, except by that reference.
*
* Essentially, interior mutability causes problems, since code looping through the range of valid
* indexes in a MatrixRef needs to be able to rely on that range of valid indexes not changing.
* This is trivially the case by default since a [Matrix](Matrix) does not have any form of
* interior mutability, and therefore an iterator holding a shared reference to a Matrix prevents
* that matrix being resized. However, a type implementing MatrixRef could introduce interior
* mutability by putting the Matrix in an `Arc<Mutex<>>` which would allow another thread to
* resize a matrix while an iterator was looping through previously valid indexes on a different
* thread. For an implementation of MatrixRef which allows such interior mutability, it must *not*
* implement `NoInteriorMutability`, and must ensure that invalid indexes for
* `get_reference_unchecked` and `get_reference_unchecked_mut` panic to prevent undefined behavior.
*
* Note that it is okay to be able to resize any MatrixRef implementation if that always requires
* an exclusive reference to the MatrixRef/Matrix, since the exclusivity prevents the above
* scenario.
*/
pub unsafe trait MatrixRef<T> {
/**
* Gets a reference to the value at the index if the index is in range. Otherwise returns None.
*/
fn try_get_reference(&self, row: Row, column: Column) -> Option<&T>;
/**
* The number of rows that this reference can view. This may be less than the actual number of
* rows stored in the matrix.
*/
fn view_rows(&self) -> Row;
/**
* The number of columns that this reference can view. This may be less than the actual number
* of columns stored in the matrix.
*/
fn view_columns(&self) -> Column;
/**
* Gets a reference to the value at the index without doing any bounds checking. For a safe
* alternative see [try_get_reference](MatrixRef::try_get_reference).
*
* # Safety
*
* Calling this method with an out-of-bounds index is *[undefined behavior]* even if the
* resulting reference is not used. Valid indexes are defined as in [MatrixRef].
*
* [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
* [MatrixRef]: MatrixRef
*/
unsafe fn get_reference_unchecked(&self, row: Row, column: Column) -> &T;
/**
* A hint for the data layout this MatrixView uses to store its data.
*
* See [Matrix layout and iterator performance](crate::matrices::iterators#matrix-layout-and-iterator-performance)
*/
fn data_layout(&self) -> DataLayout;
}
/**
* A unique/mutable reference to a matrix (or a portion of it) of some type.
*
* # Safety
*
* See [MatrixRef](MatrixRef).
*/
pub unsafe trait MatrixMut<T>: MatrixRef<T> {
/**
* Gets a mutable reference to the value at the index, if the index is in range. Otherwise
* returns None.
*/
fn try_get_reference_mut(&mut self, row: Row, column: Column) -> Option<&mut T>;
/**
* Gets a mutable reference to the value at the index without doing any bounds checking.
* For a safe alternative see [try_get_reference_mut](MatrixMut::try_get_reference_mut).
*
* # Safety
*
* Calling this method with an out-of-bounds index is *[undefined behavior]* even if the
* resulting reference is not used. Valid indexes are defined as in [MatrixRef].
*
* [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
* [MatrixRef]: MatrixRef
*/
unsafe fn get_reference_unchecked_mut(&mut self, row: Row, column: Column) -> &mut T;
}
/**
* A marker trait that promises that the implementing type does not permit interior mutability.
*
* When combined with [MatrixRef](MatrixRef) or [MatrixMut](MatrixMut), other code can rely on
* the type not being resizable or otherwise mutated through a shared reference.
*
* # Safety
*
* Implementing types must ensure that their internal state cannot be changed through a shared
* reference to them.
*/
pub unsafe trait NoInteriorMutability {}
/**
* The [data layout] used for storing the 2 dimensional data of a MatrixView.
*
* [data layout]: https://en.wikipedia.org/wiki/Row-_and_column-major_order
*/
#[derive(Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub enum DataLayout {
RowMajor,
ColumnMajor,
Other,
}
/**
* A view into some or all of a matrix.
*
* A MatrixView has a similar relationship to a [`Matrix`](Matrix) as a
* `&str` has to a `String`, or an array slice to an array. A MatrixView cannot resize
* its source, and may span only a portion of the source Matrix in each dimension.
*
* However a MatrixView is generic not only over the type of the data in the Matrix,
* but also over the way the Matrix is 'sliced' and the two are orthogonal to each other.
*
* MatrixView closely mirrors the API of Matrix, minus resizing methods which are not available.
* Methods that create a new matrix do not return a MatrixView, they return a Matrix.
*/
#[derive(Clone, Debug)]
pub struct MatrixView<T, S> {
source: S,
_type: PhantomData<T>,
}
// TODO linear_algebra numeric functions, transpositions
/**
* MatrixView methods which require only read access via a [MatrixRef](MatrixRef) source.
*/
impl<T, S> MatrixView<T, S>
where
S: MatrixRef<T>,
{
/**
* Creates a MatrixView from a source of some type.
*
* The lifetime of the source determines the lifetime of the MatrixView created. If the
* MatrixView is created from a reference to a Matrix, then the MatrixView cannot live
* longer than the Matrix referenced.
*/
pub fn from(source: S) -> MatrixView<T, S> {
MatrixView {
source,
_type: PhantomData,
}
}
/**
* Consumes the matrix view, yielding the source it was created from.
*/
pub fn source(self) -> S {
self.source
}
/**
* Gives a reference to the matrix view's source. This should typically not be needed
* since Easy ML APIs which take [MatrixRef](MatrixRef)s as inputs like iterators are
* already wrapped for you as methods on MatrixView.
*/
pub fn source_ref(&self) -> &S {
&self.source
}
/**
* Gives a mutable reference to the matrix view's source. This should typically not be needed
* since Easy ML APIs which take [MatrixRef](MatrixRef)s as inputs like iterators are
* already wrapped for you as methods on MatrixView.
*/
pub fn source_ref_mut(&mut self) -> &mut S {
&mut self.source
}
/**
* Returns the dimensionality of this matrix view in Row, Column format
*/
pub fn size(&self) -> (Row, Column) {
(self.rows(), self.columns())
}
/**
* Gets the number of rows visible to this matrix view.
*/
pub fn rows(&self) -> Row {
self.source.view_rows()
}
/**
* Gets the number of columns visible to this matrix view.
*/
pub fn columns(&self) -> Column {
self.source.view_columns()
}
/**
* Gets the data layout this MatrixView's source uses to store its data.
*
* See [Matrix layout and iterator performance](crate::matrices::iterators#matrix-layout-and-iterator-performance)
*/
pub fn data_layout(&self) -> DataLayout {
self.source.data_layout()
}
/**
* Gets a reference to the value at this row and column. Rows and Columns are 0 indexed.
*
* # Panics
*
* Panics if the index is out of range.
*/
#[track_caller]
pub fn get_reference(&self, row: Row, column: Column) -> &T {
match self.source.try_get_reference(row, column) {
Some(reference) => reference,
None => panic!(
"Index ({},{}) not in range, MatrixView range is (0,0) to ({},{}).",
row,
column,
self.rows(),
self.columns()
),
}
}
/**
* Gets a reference to the value at the row and column if the index is in range.
* Otherwise returns None.
*/
pub fn try_get_reference(&self, row: Row, column: Column) -> Option<&T> {
self.source.try_get_reference(row, column)
}
/**
* Gets a reference to the value at the index without doing any bounds checking. For a safe
* alternative see [try_get_reference](MatrixView::try_get_reference).
*
* # Safety
*
* Calling this method with an out-of-bounds index is *[undefined behavior]* even if the
* resulting reference is not used. Valid indexes are defined as in [MatrixRef].
*
* [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
* [MatrixRef]: MatrixRef
*/
pub unsafe fn get_reference_unchecked(&self, row: Row, column: Column) -> &T {
self.source.get_reference_unchecked(row, column)
}
/**
* Returns an iterator over references to a column vector in this matrix view.
* Columns are 0 indexed.
*
* # Panics
*
* Panics if the column is not visible to this view.
*/
#[track_caller]
pub fn column_reference_iter(&self, column: Column) -> ColumnReferenceIterator<T, S> {
ColumnReferenceIterator::from(&self.source, column)
}
/**
* Returns an iterator over references to a row vector in this matrix view.
* Rows are 0 indexed.
*
* # Panics
*
* Panics if the row is not visible to this view.
*/
#[track_caller]
pub fn row_reference_iter(&self, row: Row) -> RowReferenceIterator<T, S> {
RowReferenceIterator::from(&self.source, row)
}
/**
* Returns a column major iterator over references to all values in this matrix view,
* proceeding through each column in order.
*/
pub fn column_major_reference_iter(&self) -> ColumnMajorReferenceIterator<T, S> {
ColumnMajorReferenceIterator::from(&self.source)
}
/**
* Returns a row major iterator over references to all values in this matrix view,
* proceeding through each row in order.
*/
pub fn row_major_reference_iter(&self) -> RowMajorReferenceIterator<T, S> {
RowMajorReferenceIterator::from(&self.source)
}
/**
* Returns an iterator over references to the main diagonal in this matrix view.
*/
pub fn diagonal_reference_iter(&self) -> DiagonalReferenceIterator<T, S> {
DiagonalReferenceIterator::from(&self.source)
}
}
/**
* MatrixView methods which require only read access via a [MatrixRef](MatrixRef) source
* and a clonable type.
*/
impl<T, S> MatrixView<T, S>
where
T: Clone,
S: MatrixRef<T>,
{
/**
* Gets a copy of the value at this row and column. Rows and Columns are 0 indexed.
*
* # Panics
*
* Panics if the index is out of range.
*/
#[track_caller]
pub fn get(&self, row: Row, column: Column) -> T {
match self.source.try_get_reference(row, column) {
Some(reference) => reference.clone(),
None => panic!(
"Index ({},{}) not in range, MatrixView range is (0,0) to ({},{}).",
row,
column,
self.rows(),
self.columns()
),
}
}
/**
* Returns an iterator over a column vector in this matrix view. Columns are 0 indexed.
*
* If you have a matrix such as:
* ```ignore
* [
* 1, 2, 3
* 4, 5, 6
* 7, 8, 9
* ]
* ```
* then a column of 0, 1, and 2 will yield [1, 4, 7], [2, 5, 8] and [3, 6, 9]
* respectively. If you do not need to copy the elements use
* [`column_reference_iter`](MatrixView::column_reference_iter) instead.
*
* # Panics
*
* Panics if the column does not exist in this matrix.
*/
#[track_caller]
pub fn column_iter(&self, column: Column) -> ColumnIterator<T, S> {
ColumnIterator::from(&self.source, column)
}
/**
* Returns an iterator over a row vector in this matrix view. Rows are 0 indexed.
*
* If you have a matrix such as:
* ```ignore
* [
* 1, 2, 3
* 4, 5, 6
* 7, 8, 9
* ]
* ```
* then a row of 0, 1, and 2 will yield [1, 2, 3], [4, 5, 6] and [7, 8, 9]
* respectively. If you do not need to copy the elements use
* [`row_reference_iter`](MatrixView::row_reference_iter) instead.
*
* # Panics
*
* Panics if the row does not exist in this matrix.
*/
#[track_caller]
pub fn row_iter(&self, row: Row) -> RowIterator<T, S> {
RowIterator::from(&self.source, row)
}
/**
* Returns a column major iterator over all values in this matrix view, proceeding through each
* column in order.
*
* If you have a matrix such as:
* ```ignore
* [
* 1, 2
* 3, 4
* ]
* ```
* then the iterator will yield [1, 3, 2, 4]. If you do not need to copy the
* elements use [`column_major_reference_iter`](MatrixView::column_major_reference_iter)
* instead.
*/
pub fn column_major_iter(&self) -> ColumnMajorIterator<T, S> {
ColumnMajorIterator::from(&self.source)
}
/**
* Returns a row major iterator over all values in this matrix view, proceeding through each
* row in order.
*
* If you have a matrix such as:
* ```ignore
* [
* 1, 2
* 3, 4
* ]
* ```
* then the iterator will yield [1, 2, 3, 4]. If you do not need to copy the
* elements use [`row_major_reference_iter`](MatrixView::row_major_reference_iter) instead.
*/
pub fn row_major_iter(&self) -> RowMajorIterator<T, S> {
RowMajorIterator::from(&self.source)
}
/**
* Returns a iterator over the main diagonal of this matrix view.
*
* If you have a matrix such as:
* ```ignore
* [
* 1, 2
* 3, 4
* ]
* ```
* then the iterator will yield [1, 4]. If you do not need to copy the
* elements use [`diagonal_reference_iter`](MatrixView::diagonal_reference_iter) instead.
*
* # Examples
*
* Computing a [trace](https://en.wikipedia.org/wiki/Trace_(linear_algebra))
* ```
* use easy_ml::matrices::Matrix;
* use easy_ml::matrices::views::MatrixView;
* let view = MatrixView::from(Matrix::from(vec![
* vec![ 1, 2, 3 ],
* vec![ 4, 5, 6 ],
* vec![ 7, 8, 9 ],
* ]));
* let trace: i32 = view.diagonal_iter().sum();
* assert_eq!(trace, 1 + 5 + 9);
* ```
*/
pub fn diagonal_iter(&self) -> DiagonalIterator<T, S> {
DiagonalIterator::from(&self.source)
}
/**
* Creates and returns a new matrix with all values from the original with the
* function applied to each.
*
* # Exmples
* ```
* use easy_ml::matrices::Matrix;
* use easy_ml::matrices::views::MatrixView;
* let x = MatrixView::from(Matrix::from(vec![
* vec![ 0.0, 1.2 ],
* vec![ 5.8, 6.9 ]]));
* let y = x.map(|element| element > 2.0);
* let result = Matrix::from(vec![
* vec![ false, false ],
* vec![ true, true ]]);
* assert_eq!(&y, &result);
* ```
*/
pub fn map<U>(&self, mapping_function: impl Fn(T) -> U) -> Matrix<U>
where
U: Clone,
{
let mapped = self.row_major_iter().map(mapping_function).collect();
Matrix::from_flat_row_major(self.size(), mapped)
}
/**
* Creates and returns a new matrix with all values from the original
* and the index of each value mapped by a function. This can be used
* to perform elementwise operations that are not defined on the
* Matrix type itself.
*/
pub fn map_with_index<U>(&self, mapping_function: impl Fn(T, Row, Column) -> U) -> Matrix<U>
where
U: Clone,
{
let mapped = self
.row_major_iter()
.with_index()
.map(|((i, j), x)| mapping_function(x, i, j))
.collect();
Matrix::from_flat_row_major(self.size(), mapped)
}
}
/**
* MatrixView methods which require mutable access via a [MatrixMut](MatrixMut) source.
*/
impl<T, S> MatrixView<T, S>
where
S: MatrixMut<T>,
{
/**
* Gets a mutable reference to the value at this row and column.
* Rows and Columns are 0 indexed.
*
* # Panics
*
* Panics if the index is out of range.
*/
#[track_caller]
pub fn get_reference_mut(&mut self, row: Row, column: Column) -> &mut T {
let size = self.size();
// borrow for size ends
match self.source.try_get_reference_mut(row, column) {
Some(reference) => reference,
None => panic!(
"Index ({},{}) not in range, MatrixView range is (0,0) to ({},{}).",
row, column, size.0, size.1
),
}
}
/**
* Sets a new value to this row and column. Rows and Columns are 0 indexed.
*
* # Panics
*
* Panics if the index is out of range.
*/
#[track_caller]
pub fn set(&mut self, row: Row, column: Column, value: T) {
match self.source.try_get_reference_mut(row, column) {
Some(reference) => *reference = value,
None => panic!(
"Index ({},{}) not in range, MatrixView range is (0,0) to ({},{}).",
row,
column,
self.rows(),
self.columns()
),
}
}
/**
* Gets a mutable reference to the value at the row and column if the index is in range.
* Otherwise returns None.
*/
pub fn try_get_reference_mut(&mut self, row: Row, column: Column) -> Option<&mut T> {
self.source.try_get_reference_mut(row, column)
}
/**
* Gets a mutable reference to the value at the index without doing any bounds checking.
* For a safe alternative see [try_get_reference_mut](MatrixView::try_get_reference_mut).
*
* # Safety
*
* Calling this method with an out-of-bounds index is *[undefined behavior]* even if the
* resulting reference is not used. Valid indexes are defined as in [MatrixRef].
*
* [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
* [MatrixRef]: MatrixRef
*/
pub unsafe fn get_reference_unchecked_mut(&mut self, row: Row, column: Column) -> &mut T {
self.source.get_reference_unchecked_mut(row, column)
}
}
/**
* MatrixView methods which require mutable access via a [MatrixMut](MatrixMut) source and
* no interior mutability.
*/
impl<T, S> MatrixView<T, S>
where
S: MatrixMut<T> + NoInteriorMutability,
{
/**
* Returns an iterator over mutable references to a column vector in this matrix view.
* Columns are 0 indexed.
*
* # Panics
*
* Panics if the column is not visible to this view.
*/
#[track_caller]
pub fn column_reference_mut_iter(
&mut self,
column: Column,
) -> ColumnReferenceMutIterator<T, S> {
ColumnReferenceMutIterator::from(&mut self.source, column)
}
/**
* Returns an iterator over mutable references to a row vector in this matrix view.
* Rows are 0 indexed.
*
* # Panics
*
* Panics if the row is not visible to this view.
*/
#[track_caller]
pub fn row_reference_mut_iter(&mut self, row: Row) -> RowReferenceMutIterator<T, S> {
RowReferenceMutIterator::from(&mut self.source, row)
}
/**
* Returns a column major iterator over mutable references to all values in this matrix view,
* proceeding through each column in order.
*/
pub fn column_major_reference_mut_iter(&mut self) -> ColumnMajorReferenceMutIterator<T, S> {
ColumnMajorReferenceMutIterator::from(&mut self.source)
}
/**
* Returns a row major iterator over mutable references to all values in this matrix view,
* proceeding through each row in order.
*/
pub fn row_major_reference_mut_iter(&mut self) -> RowMajorReferenceMutIterator<T, S> {
RowMajorReferenceMutIterator::from(&mut self.source)
}
/**
* Returns an iterator over mutable references to the main diagonal in this matrix view.
*/
pub fn diagonal_reference_mut_iter(&mut self) -> DiagonalReferenceMutIterator<T, S> {
DiagonalReferenceMutIterator::from(&mut self.source)
}
}
/**
* MatrixView methods which require mutable access via a [MatrixMut](MatrixMut) source
* and a clonable type.
*/
impl<T, S> MatrixView<T, S>
where
T: Clone,
S: MatrixMut<T>,
{
/**
* Applies a function to all values in the matrix view, modifying the source in place.
*
* # Examples
*
* ```
* use easy_ml::matrices::Matrix;
* use easy_ml::matrices::views::MatrixView;
* let mut matrix = Matrix::from(vec![
* vec![ 0.0, 1.2 ],
* vec![ 5.8, 6.9 ]]);
* {
* let mut view = MatrixView::from(&mut matrix);
* view.map_mut(|x| x + 1.0);
* }
* let result = Matrix::from(vec![
* vec![ 1.0, 2.2 ],
* vec![ 6.8, 7.9 ]]);
* assert_eq!(result, matrix);
*/
pub fn map_mut(&mut self, mapping_function: impl Fn(T) -> T) {
self.map_mut_with_index(|x, _, _| mapping_function(x))
}
/**
* Applies a function to all values and each value's index in the matrix view,
* modifying the source in place.
*/
pub fn map_mut_with_index(&mut self, mapping_function: impl Fn(T, Row, Column) -> T) {
// TODO: For version 2, reuse mut iterator implementations
// match self.data_layout() {
// DataLayout::ColumnMajor => {
// self.column_major_reference_mut_iter().with_index().for_each(|((i, j), x)| {
// *x = mapping_function(x.clone(), i, j);
// });
// }
// _ => {
// self.row_major_reference_mut_iter().with_index().for_each(|((i, j), x)| {
// *x = mapping_function(x.clone(), i, j);
// });
// }
// }
match self.data_layout() {
DataLayout::ColumnMajor => {
for j in 0..self.columns() {
for i in 0..self.rows() {
self.set(i, j, mapping_function(self.get(i, j), i, j))
}
}
}
_ => {
for i in 0..self.rows() {
for j in 0..self.columns() {
self.set(i, j, mapping_function(self.get(i, j), i, j))
}
}
}
}
}
}
// Common formatting logic used for Matrix and MatrixView Display implementations
pub(crate) fn format_view<T, S>(view: &S, f: &mut std::fmt::Formatter) -> std::fmt::Result
where
T: std::fmt::Display,
S: MatrixRef<T>,
{
let rows = view.view_rows();
let columns = view.view_columns();
write!(f, "[ ")?;
for row in 0..rows {
if row > 0 {
write!(f, " ")?;
}
for column in 0..columns {
let value = match view.try_get_reference(row, column) {
Some(x) => x,
None => panic!(
"Expected ({},{}) to be in range of (0,0) to ({},{})",
row, column, rows, columns
),
};
// default to 3 decimals but allow the caller to override
// TODO: ideally want to set significant figures instead of decimals
write!(f, "{:.*}", f.precision().unwrap_or(3), value)?;
if column < columns - 1 {
write!(f, ", ")?;
}
}
if row < rows - 1 {
writeln!(f)?;
}
}
write!(f, " ]")
}
/**
* Any matrix view of a Displayable type implements Display
*/
impl<T, S> std::fmt::Display for MatrixView<T, S>
where
T: std::fmt::Display,
S: MatrixRef<T>,
{
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
format_view(&self.source, f)
}
}
#[test]
fn printing_matrices() {
use crate::matrices::Matrix;
let view = MatrixView::from(Matrix::from(vec![vec![1.0, 2.0], vec![3.0, 4.0]]));
let formatted = view.to_string();
assert_eq!("[ 1.000, 2.000\n 3.000, 4.000 ]", formatted);
}
// Common matrix equality definition
#[inline]
pub(crate) fn matrix_equality<T, S1, S2>(left: &S1, right: &S2) -> bool
where
T: PartialEq,
S1: MatrixRef<T>,
S2: MatrixRef<T>,
{
if left.view_rows() != right.view_rows() {
return false;
}
if left.view_columns() != right.view_columns() {
return false;
}
// perform elementwise check, return true only if every element in
// each matrix is the same
match (left.data_layout(), right.data_layout()) {
(DataLayout::ColumnMajor, DataLayout::ColumnMajor) => {
ColumnMajorReferenceIterator::from(left)
.zip(ColumnMajorReferenceIterator::from(right))
.all(|(x, y)| x == y)
}
_ => RowMajorReferenceIterator::from(left)
.zip(RowMajorReferenceIterator::from(right))
.all(|(x, y)| x == y),
}
}
/**
* PartialEq is implemented as two matrix views are equal if and only if all their elements
* are equal and they have the same size. Differences in their source types are ignored.
*/
impl<T, S1, S2> PartialEq<MatrixView<T, S2>> for MatrixView<T, S1>
where
T: PartialEq,
S1: MatrixRef<T>,
S2: MatrixRef<T>,
{
#[inline]
fn eq(&self, other: &MatrixView<T, S2>) -> bool {
matrix_equality(&self.source, &other.source)
}
}
/**
* A MatrixView and a Matrix can be compared for equality. PartialEq is implemented as they are
* equal if and only if all their elements are equal and they have the same size.
*/
impl<T, S> PartialEq<Matrix<T>> for MatrixView<T, S>
where
T: PartialEq,
S: MatrixRef<T>,
{
#[inline]
fn eq(&self, other: &Matrix<T>) -> bool {
matrix_equality(&self.source, &other)
}
}
/**
* A Matrix and a MatrixView can be compared for equality. PartialEq is implemented as they are
* equal if and only if all their elements are equal and they have the same size.
*/
impl<T, S> PartialEq<MatrixView<T, S>> for Matrix<T>
where
T: PartialEq,
S: MatrixRef<T>,
{
#[inline]
fn eq(&self, other: &MatrixView<T, S>) -> bool {
matrix_equality(&self, &other.source)
}
}
#[test]
fn creating_matrix_views_erased() {
let matrix = Matrix::from(vec![vec![1.0]]);
let boxed: Box<dyn MatrixMut<f32>> = Box::new(matrix);
let mut view = MatrixView::from(boxed);
view.set(0, 0, view.get(0, 0) + 1.0);
assert_eq!(2.0, view.get(0, 0));
}