1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
/*!
 * Linear algebra algorithms on numbers and matrices
 *
 * Note that these functions are also exposed as corresponding methods on the Matrix type,
 * but in depth documentation is only presented here.
 *
 * It is recommended to favor the corresponding methods on the Matrix type as the
 * Rust compiler can get confused with the generics on these functions if you use
 * these methods without turbofish syntax.
 */

use crate::matrices::{Matrix, Row, Column};
use crate::numeric::{Numeric, NumericRef};
use crate::numeric::extra::Sqrt;

/**
 * Computes the inverse of a matrix provided that it exists. To have an inverse
 * a matrix must be square (same number of rows and columns) and it must also
 * have a non zero determinant.
 *
 * The inverse of a matrix `A` is the matrix `A^-1` which when multiplied by `A`
 * in either order yields the identity matrix `I`.
 *
 * `A(A^-1) == (A^-1)A == I`.
 *
 *The inverse is like the reciprocal of a number, except for matrices instead of scalars.
 * With scalars, there is no inverse for `0` because `1 / 0` is not defined. Similarly
 * to compute the inverse of a matrix we divide by the determinant, so matrices
 * with a determinant of 0 have no inverse, even if they are square.
 *
 * This algorithm performs the analytic solution described by
 * [wikipedia](https://en.wikipedia.org/wiki/Invertible_matrix#Analytic_solution)
 * and should compute the inverse for any size of square matrix if it exists, but
 * is inefficient for large matrices.
 *
 * # Warning
 *
 * With some uses of this function the Rust compiler gets confused about what type `T`
 * should be and you will get the error:
 * > overflow evaluating the requirement `&'a _: easy_ml::numeric::NumericByValue<_, _>`
 *
 * In this case you need to manually specify the type of T by using the
 * turbofish syntax like:
 * `linear_algebra::inverse::<f32>(&matrix)`
 *
 * Alternatively, the compiler doesn't seem to run into this problem if you
 * use the equivalent methods on the matrix type like so:
 * `matrix.inverse()`
 */
pub fn inverse<T: Numeric>(matrix: &Matrix<T>) -> Option<Matrix<T>>
where for<'a> &'a T: NumericRef<T> {
    if matrix.rows() != matrix.columns() {
        return None;
    }
    // inverse of a 1 x 1 matrix is a special case
    if matrix.rows() == 1 {
        // determinant of a 1 x 1 matrix is the single element
        let element = matrix.scalar();
        if element == T::zero() {
            return None;
        }
        return Some(Matrix::unit(T::one() / element));
    }

    // compute the general case for a N x N matrix where N >= 2
    match determinant(matrix) {
        Some(det) => {
            if det == T::zero() {
                return None;
            }
            let determinant_reciprocal = T::one() / det;
            let mut cofactor_matrix = Matrix::empty(T::zero(), matrix.size());
            for i in 0..matrix.rows() {
                for j in 0..matrix.columns() {
                    // this should always return Some due to the earlier checks
                    let ij_minor = minor(matrix, i, j)?;
                    // i and j may each be up to the maximum value for usize but
                    // we only need to know if they are even or add as
                    // -1 ^ (i + j) == -1 ^ ((i % 2) + (j % 2))
                    // by taking modulo of both before adding we ensure there
                    // is no overflow
                    let sign = i8::pow(-1, (i.rem_euclid(2) + j.rem_euclid(2)) as u32);
                    // convert sign into type T
                    let sign = if sign == 1 {
                        T::one()
                    } else {
                        T::zero() - T::one()
                    };
                    // each element of the cofactor matrix is -1^(i+j) * M_ij
                    // for M_ij equal to the ij minor of the matrix
                    cofactor_matrix.set(i, j, sign * ij_minor);
                }
            }
            // tranposing the cofactor matrix yields the adjugate matrix
            cofactor_matrix.transpose_mut();
            // finally to compute the inverse we need to multiply each element by 1 / |A|
            cofactor_matrix.map_mut(|element| element * determinant_reciprocal.clone());
            Some(cofactor_matrix)
        },
        None => None
    }
}

// TODO: expose these minor methods and test them directly
// https://www.teachoo.com/9780/1204/Minor-and-Cofactor-of-a-determinant/category/Finding-Minors-and-cofactors/

/*
 * Computes the (i,j) minor of a matrix by copying it. This is the
 * determinant of the matrix after deleting the ith row and the jth column.
 *
 * Minors can only be taken on matrices which have a determinant and rows and
 * columns to remove. Hence for non square matrices or 1 x 1 matrices this returns
 * None.
 */
fn minor<T: Numeric>(matrix: &Matrix<T>, i: Row, j: Column) -> Option<T>
where for<'a> &'a T: NumericRef<T> {
    minor_mut(&mut matrix.clone(), i, j)
}

/**
 * Computes the (i,j) minor of a matrix by modifying it in place. This is
 * the determinant of the matrix after deleting the ith row and the jth column.
 *
 * Minors can only be taken on matrices which have a determinant and rows and
 * columns to remove. Hence for non square matrices or 1 x 1 matrices this returns
 * None and does not modify the matrix.
 */
fn minor_mut<T: Numeric>(matrix: &mut Matrix<T>, i: Row, j: Column) -> Option<T>
where for<'a> &'a T: NumericRef<T> {
    if matrix.rows() == 1 || matrix.columns() == 1 {
        // nothing to delete
        return None;
    }
    if matrix.rows() != matrix.columns() {
        // no determinant
        return None;
    }
    matrix.remove_row(i);
    matrix.remove_column(j);
    determinant(matrix)
}

/**
 * Computes the determinant of a square matrix. For a 2 x 2 matrix this is given by
 * `ad - bc` for:
 * ```ignore
 * [
 *   a, b
 *   c, d
 * ]
 * ```
 *
 * This function will return the determinant only if it exists. Non square matrices
 * do not have a determinant. A determinant is a scalar value computed from the
 * elements of a square matrix and often corresponds to matrices with special properties.
 *
 * Note that the determinant of a 1 x 1 matrix is just the element in the matrix.
 *
 * This function computes the determinant using the same type as that of the Matrix,
 * hence if the input type is unsigned (such as Wrapping&lt;u8&gt;) the value computed
 * is likely to not make any sense because a determinant may be negative.
 *
 * [https://en.wikipedia.org/wiki/Determinant](https://en.wikipedia.org/wiki/Determinant)
 *
 * # Warning
 *
 * With some uses of this function the Rust compiler gets confused about what type `T`
 * should be and you will get the error:
 * > overflow evaluating the requirement `&'a _: easy_ml::numeric::NumericByValue<_, _>`
 *
 * In this case you need to manually specify the type of T by using the
 * turbofish syntax like:
 * `linear_algebra::determinant::<f32>(&matrix)`
 *
 * Alternatively, the compiler doesn't seem to run into this problem if you
 * use the equivalent methods on the matrix type like so:
 * `matrix.determinant()`
 */
pub fn determinant<T: Numeric>(matrix: &Matrix<T>) -> Option<T>
where for<'a> &'a T: NumericRef<T> {
    if matrix.rows() != matrix.columns() {
        return None;
    }
    let length = matrix.rows();

    if length == 0 {
        return None;
    }

    if length == 1 {
        return Some(matrix.scalar());
    }

    // compute the general case for the determinant of an N x N matrix with
    // N >= 2

    let mut sum = T::zero();

    // iterate through all permutations of the numbers in the range from 0 to N - 1
    // which we will use for indexing
    with_each_permutation(&mut (0..length).collect(), &mut |permutation, even_swap| {
        // Compute the signature for this permutation, such that we
        // have +1 for an even number and -1 for an odd number of swaps
        let signature = if even_swap {
            T::one()
        } else {
            T::zero() - T::one()
        };
        let mut product = T::one();
        for (n, i) in permutation.iter().enumerate() {
            // Get the element at the index corresponding to n and the n'th
            // element in the permutation list.
            let element = matrix.get_reference(n, *i);
            product = product * element;
        }
        // copying the sum to prevent a move that stops us from returning it
        // still massively reduces the amount of copies compared to using
        // generate_permutations which would instead require copying the
        // permutation list N! times though allow to not copy the sum.
        sum = sum.clone() + (signature * product);
    });

    Some(sum)
}

/*
 * Computes the factorial of a number.
 * eg for an input of 5 computes 1 * 2 * 3 * 4 * 5
 * which is equal to 120
 */
#[allow(dead_code)] // used in testing
fn factorial(n: usize) -> usize {
    (1..=n).product()
}

/**
 * Performs repeated swaps on the provided mutable reference to a list, swapping
 * exactly 1 pair each time before calling the consumer as defined by Heap's Algorithm
 * https://en.wikipedia.org/wiki/Heap%27s_algorithm
 */
fn heaps_permutations<T: Clone, F>(k: usize, list: &mut Vec<T>, consumer: &mut F)
where F: FnMut(&mut Vec<T>) {
    if k == 1 {
        consumer(list);
        return;
    }

    for i in 0..k {
        heaps_permutations(k - 1, list, consumer);
        // avoid redundant swaps
        if i < k - 1 {
            // Swap on the even/oddness of k
            if k % 2 == 0 {
                // if k is even swap final and the index
                list.swap(i, k - 1);
            } else {
                // if k is odd swap final and first
                list.swap(0, k - 1);
            }
        }
    }
}

/**
 * Generates a list of all possible permutations of a list, with each
 * sublist one swap different from the last and correspondingly alternating
 * in even and odd swaps required to obtain the reordering.
 */
#[allow(dead_code)] // used in testing
fn generate_permutations<T: Clone>(list: &mut Vec<T>) -> Vec<(Vec<T>, bool)> {
    let mut permutations = Vec::with_capacity(factorial(list.len()));
    let mut even_swaps = true;
    heaps_permutations(list.len(), list, &mut |permuted| {
        permutations.push((permuted.clone(), even_swaps));
        even_swaps = !even_swaps;
    });
    permutations
}

/*
 * In place version of generate_permutations which calls the consumer on
 * each permuted list without performing any copies (ie each permuted list)
 * is the same list before and after permutation.
 */
fn with_each_permutation<T: Clone, F>(list: &mut Vec<T>, consumer: &mut F)
where F: FnMut(&mut Vec<T>, bool) {
    let mut even_swaps = true;
    heaps_permutations(list.len(), list, &mut |permuted| {
        consumer(permuted, even_swaps);
        even_swaps = !even_swaps;
    });
}

#[test]
fn test_permutations() {
    // Exhaustively test permutation even/oddness for an input
    // of length 3
    let mut list = vec![ 1, 2, 3 ];
    let permutations = generate_permutations(&mut list);
    assert!(permutations.contains(&(vec![1, 2, 3], true)));
    assert!(permutations.contains(&(vec![3, 2, 1], false)));
    assert!(permutations.contains(&(vec![2, 3, 1], true)));
    assert!(permutations.contains(&(vec![1, 3, 2], false)));
    assert!(permutations.contains(&(vec![2, 1, 3], false)));
    assert!(permutations.contains(&(vec![3, 1, 2], true)));
    assert_eq!(permutations.len(), 6);

    // Test a larger input non exhaustively to make sure it
    // generalises.
    let mut list = vec![ 1, 2, 3, 4, 5 ];
    let permuted = generate_permutations(&mut list);
    assert!(permuted.contains(&(vec![1, 2, 3, 4, 5], true)));
    assert!(permuted.contains(&(vec![1, 2, 3, 5, 4], false)));
    assert!(permuted.contains(&(vec![1, 2, 5, 3, 4], true)));

    // Test a length 2 input as well
    let mut list = vec![0, 1];
    let permuted = generate_permutations(&mut list);
    assert!(permuted.contains(&(vec![0, 1], true)));
    assert!(permuted.contains(&(vec![1, 0], false)));
    assert_eq!(permuted.len(), 2);
}

/**
 * Computes the covariance matrix for an NxM feature matrix, in which
 * each N'th row has M features to find the covariance and variance of.
 *
 * The covariance matrix is a matrix of how each feature varies with itself
 * (along the diagonal) and all the other features (symmetrically above and below
 * the diagonal).
 *
 * Each element in the covariance matrix at (i, j) will be the variance of the
 * ith and jth features from the feature matrix, defined as the zero meaned
 * dot product of the two feature vectors divided by the number of samples.
 *
 * If all the features in the input have a variance of one then the covariance matrix
 * returned by this function will be equivalent to the correlation matrix of the input
 *
 * This function does not perform [Bessel's correction](https://en.wikipedia.org/wiki/Bessel%27s_correction)
 *
 * # Panics
 *
 * If the numeric type is unable to represent the number of samples
 * for each feature (ie if `T: i8` and you have 1000 samples) then this function
 * will panic.
 *
 * # Warning
 *
 * With some uses of this function the Rust compiler gets confused about what type `T`
 * should be and you will get the error:
 * > overflow evaluating the requirement `&'a _: easy_ml::numeric::NumericByValue<_, _>`
 *
 * In this case you need to manually specify the type of T by using the
 * turbofish syntax like:
 * `linear_algebra::covariance::<f32>(&matrix)`
 *
 * Alternatively, the compiler doesn't seem to run into this problem if you
 * use the equivalent methods on the matrix type like so:
 * `matrix.covariance_column_features()`
 */
pub fn covariance_column_features<T: Numeric>(matrix: &Matrix<T>) -> Matrix<T>
where for<'a> &'a T: NumericRef<T> {
    let features = matrix.columns();
    let samples = T::from_usize(matrix.rows()).expect(
        "The maximum value of the matrix type T cannot represent this many samples");
    let mut covariance_matrix = Matrix::empty(T::zero(), (features, features));
    covariance_matrix.map_mut_with_index(|_, i, j| {
        // set each element of the covariance matrix to the variance
        // of features i and j
        let feature_i_mean: T = matrix.column_iter(i).sum::<T>() / &samples;
        let feature_j_mean: T = matrix.column_iter(j).sum::<T>() / &samples;
        matrix.column_reference_iter(i)
            .map(|x| x - &feature_i_mean)
            .zip(matrix.column_reference_iter(j).map(|y| y - &feature_j_mean))
            .map(|(x, y)| x * y)
            .sum::<T>() / &samples
    });
    covariance_matrix
}

/**
 * Computes the covariance matrix for an NxM feature matrix, in which
 * each M'th column has N features to find the covariance and variance of.
 *
 * The covariance matrix is a matrix of how each feature varies with itself
 * (along the diagonal) and all the other features (symmetrically above and below
 * the diagonal).
 *
 * Each element in the covariance matrix at (i, j) will be the variance of the
 * ith and jth features from the feature matrix, defined as the zero meaned
 * dot product of the two feature vectors divided by the number of samples.
 *
 * If all the features in the input have a variance of one then the covariance matrix
 * returned by this function will be equivalent to the correlation matrix of the input
 *
 * This function does not perform [Bessel's correction](https://en.wikipedia.org/wiki/Bessel%27s_correction)
 *
 * # Panics
 *
 * If the numeric type is unable to represent the number of samples
 * for each feature (ie if `T: i8` and you have 1000 samples) then this function
 * will panic.
 *
 * # Warning
 *
 * With some uses of this function the Rust compiler gets confused about what type `T`
 * should be and you will get the error:
 * > overflow evaluating the requirement `&'a _: easy_ml::numeric::NumericByValue<_, _>`
 *
 * In this case you need to manually specify the type of T by using the
 * turbofish syntax like:
 * `linear_algebra::covariance::<f32>(&matrix)`
 *
 * Alternatively, the compiler doesn't seem to run into this problem if you
 * use the equivalent methods on the matrix type like so:
 * `matrix.covariance_row_features()`
 */
pub fn covariance_row_features<T: Numeric>(matrix: &Matrix<T>) -> Matrix<T>
where for<'a> &'a T: NumericRef<T> {
    let features = matrix.rows();
    let samples = T::from_usize(matrix.columns()).expect(
        "The maximum value of the matrix type T cannot represent this many samples");
    let mut covariance_matrix = Matrix::empty(T::zero(), (features, features));
    covariance_matrix.map_mut_with_index(|_, i, j| {
        // set each element of the covariance matrix to the variance
        // of features i and j
        let feature_i_mean: T = matrix.row_iter(i).sum::<T>() / &samples;
        let feature_j_mean: T = matrix.row_iter(j).sum::<T>() / &samples;
        matrix.row_reference_iter(i)
            .map(|x| x - &feature_i_mean)
            .zip(matrix.row_reference_iter(j).map(|y| y - &feature_j_mean))
            .map(|(x, y)| x * y)
            .sum::<T>() / &samples
    });
    covariance_matrix
}

/**
 * Computes the cholesky decomposition of a matrix. This yields a matrix `L`
 * such that for the provided matrix `A`, `L * L^T = A`. `L` will always be
 * lower triangular, ie all entries above the diagonal will be 0. Hence cholesky
 * decomposition can be interpreted as a generalised square root function.
 *
 * Cholesky decomposition is defined for
 * [Hermitian](https://en.wikipedia.org/wiki/Hermitian_matrix),
 * [positive definite](https://en.wikipedia.org/wiki/Definiteness_of_a_matrix)
 * matrices. For a real valued (ie not containing complex numbers) matrix, if it is
 * [Symmetric](https://en.wikipedia.org/wiki/Symmetric_matrix) it is Hermitian.
 *
 * This function does not check that the provided matrix is Hermitian or
 * positive definite at present, but may in the future, in which case `None`
 * will be returned.
 */
pub fn cholesky_decomposition<T: Numeric + Sqrt<Output = T>>(matrix: &Matrix<T>) -> Option<Matrix<T>>
where for<'a> &'a T: NumericRef<T> {
    if matrix.rows() != matrix.columns() {
        return None;
    }
    // The computation steps are outlined nicely at https://rosettacode.org/wiki/Cholesky_decomposition
    let mut lower_triangular = Matrix::empty(T::zero(), matrix.size());
    for i in 0..lower_triangular.rows() {
        // For each column k we need to compute all i, k entries
        // before incrementing k further as the diagonals depend
        // on the elements below the diagonal of the previous columns,
        // and the elements below the diagonal depend on the diagonal
        // of their column and elements below the diagonal up to that
        // column.
        for k in 0..lower_triangular.columns() {
            if i == k {
                let mut sum = T::zero();
                for j in 0..k {
                    sum = &sum + (lower_triangular.get_reference(k, j)
                        * lower_triangular.get_reference(k, j));
                }
                lower_triangular.set(i, k, (matrix.get_reference(i, k) - sum).sqrt());
            }
            // after 0,0 we iterate down the rows for i,k where i > k
            // these elements only depend on values already computed in
            // their own column and prior columns
            if i > k {
                let mut sum = T::zero();
                for j in 0..k {
                    sum = &sum + (lower_triangular.get_reference(i, j)
                        * lower_triangular.get_reference(k, j));
                }
                lower_triangular.set(i, k,
                    (T::one() / lower_triangular.get_reference(k, k)) *
                    (matrix.get_reference(i, k) - sum));
            }
        }
    }
    Some(lower_triangular)
}