1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
mod material;
mod mode;
mod vertex;
use crate::utils::*;
use cgmath::*;
use std::sync::Arc;
pub use material::*;
pub use mode::*;
pub use vertex::*;
/// Geometry to be rendered with the given material.
///
/// # Examples
///
/// ### Classic rendering
///
/// In most cases you want to use `triangles()`, `lines()` and `points()`
/// to get the geometry of the model.
///
/// ```
/// # use easy_gltf::*;
/// # use easy_gltf::model::Mode;
/// # let model = Model::default();
/// match model.mode() {
/// Mode::Triangles | Mode::TriangleFan | Mode::TriangleStrip => {
/// let triangles = model.triangles().unwrap();
/// // Render triangles...
/// },
/// Mode::Lines | Mode::LineLoop | Mode::LineStrip => {
/// let lines = model.lines().unwrap();
/// // Render lines...
/// }
/// Mode::Points => {
/// let points = model.points().unwrap();
/// // Render points...
/// }
/// }
/// ```
///
/// ### OpenGL style rendering
///
/// You will need the vertices and the indices if existing.
///
/// ```
/// # use easy_gltf::*;
/// # use easy_gltf::model::Mode;
/// # let model = Model::default();
/// let vertices = model. vertices();
/// let indices = model.indices();
/// match model.mode() {
/// Mode::Triangles => {
/// if let Some(indices) = indices.as_ref() {
/// // glDrawElements(GL_TRIANGLES, indices.len(), GL_UNSIGNED_INT, 0);
/// } else {
/// // glDrawArrays(GL_TRIANGLES, 0, vertices.len());
/// }
/// },
/// // ...
/// # _ => unimplemented!(),
/// }
/// ```
#[derive(Clone, Debug, Default)]
pub struct Model {
#[cfg(feature = "names")]
pub(crate) mesh_name: Option<String>,
#[cfg(feature = "extras")]
pub(crate) mesh_extras: gltf::json::extras::Extras,
#[cfg(feature = "extras")]
pub(crate) primitive_extras: gltf::json::extras::Extras,
pub(crate) primitive_index: usize,
pub(crate) vertices: Vec<Vertex>,
pub(crate) indices: Option<Vec<u32>>,
pub(crate) mode: Mode,
pub(crate) material: Arc<Material>,
pub(crate) has_normals: bool,
pub(crate) has_tangents: bool,
pub(crate) has_tex_coords: bool,
}
impl Model {
#[cfg(feature = "names")]
/// Mesh name. Requires the `names` feature.
///
/// A `Model` in easy-gltf represents a primitive in gltf, so if a mesh has multiple primitives, you will
/// get multiple `Model`s with the same name. You can use `primitive_index` to get which primitive the `Model`
/// corresponds to.
pub fn mesh_name(&self) -> Option<&str> {
self.mesh_name.as_deref()
}
/// Index of the Primitive of the Mesh that this `Model` corresponds to.
pub fn primitive_index(&self) -> usize {
self.primitive_index
}
#[cfg(feature = "extras")]
/// Mesh extra data. Requires the `extras` feature.
pub fn mesh_extras(&self) -> &gltf::json::extras::Extras {
&self.mesh_extras
}
#[cfg(feature = "extras")]
/// Primitive extra data. Requires the `extras` feature.
pub fn primitive_extras(&self) -> &gltf::json::extras::Extras {
&self.primitive_extras
}
/// Material to apply to the whole model.
pub fn material(&self) -> Arc<Material> {
self.material.clone()
}
/// List of raw `vertices` of the model. You might have to use the `indices`
/// to render the model.
///
/// **Note**: If you're not rendering with **OpenGL** you probably want to use
/// `triangles()`, `lines()` or `points()` instead.
pub fn vertices(&self) -> &Vec<Vertex> {
&self.vertices
}
/// Potential list of `indices` to render the model using raw `vertices`.
///
/// **Note**: If you're **not** rendering with **OpenGL** you probably want to use
/// `triangles()`, `lines()` or `points()` instead.
pub fn indices(&self) -> Option<&Vec<u32>> {
self.indices.as_ref()
}
/// The type of primitive to render.
/// You have to check the `mode` to render the model correctly.
///
/// Then you can either use:
/// * `vertices()` and `indices()` to arrange the data yourself (useful for **OpenGL**).
/// * `triangles()` or `lines()` or `points()` according to the returned mode.
pub fn mode(&self) -> Mode {
self.mode.clone()
}
/// List of triangles ready to be rendered.
///
/// **Note**: This function will return an error if the mode isn't `Triangles`, `TriangleFan`
/// or `TriangleStrip`.
pub fn triangles(&self) -> Result<Vec<Triangle>, BadMode> {
let mut triangles = vec![];
let indices = (0..self.vertices.len() as u32).collect();
let indices = self.indices().unwrap_or(&indices);
match self.mode {
Mode::Triangles => {
for i in (0..indices.len()).step_by(3) {
triangles.push([
self.vertices[indices[i] as usize],
self.vertices[indices[i + 1] as usize],
self.vertices[indices[i + 2] as usize],
]);
}
}
Mode::TriangleStrip => {
for i in 0..(indices.len() - 2) {
triangles.push([
self.vertices[indices[i] as usize + i % 2],
self.vertices[indices[i + 1 - i % 2] as usize],
self.vertices[indices[i + 2] as usize],
]);
}
}
Mode::TriangleFan => {
for i in 1..(indices.len() - 1) {
triangles.push([
self.vertices[indices[0] as usize],
self.vertices[indices[i] as usize],
self.vertices[indices[i + 1] as usize],
]);
}
}
_ => return Err(BadMode { mode: self.mode() }),
}
Ok(triangles)
}
/// List of lines ready to be rendered.
///
/// **Note**: This function will return an error if the mode isn't `Lines`, `LineLoop`
/// or `LineStrip`.
pub fn lines(&self) -> Result<Vec<Line>, BadMode> {
let mut lines = vec![];
let indices = (0..self.vertices.len() as u32).collect();
let indices = self.indices().unwrap_or(&indices);
match self.mode {
Mode::Lines => {
for i in (0..indices.len()).step_by(2) {
lines.push([
self.vertices[indices[i] as usize],
self.vertices[indices[i + 1] as usize],
]);
}
}
Mode::LineStrip | Mode::LineLoop => {
for i in 0..(indices.len() - 1) {
lines.push([
self.vertices[indices[i] as usize],
self.vertices[indices[i + 1] as usize],
]);
}
}
_ => return Err(BadMode { mode: self.mode() }),
}
if self.mode == Mode::LineLoop {
lines.push([
self.vertices[indices[0] as usize],
self.vertices[indices[indices.len() - 1] as usize],
]);
}
Ok(lines)
}
/// List of points ready to be renderer.
///
/// **Note**: This function will return an error if the mode isn't `Points`.
pub fn points(&self) -> Result<&Vec<Vertex>, BadMode> {
match self.mode {
Mode::Points => Ok(&self.vertices),
_ => Err(BadMode { mode: self.mode() }),
}
}
/// Indicate if the vertices contains normal information.
///
/// **Note**: If this function return `false` all vertices has a normal field
/// initialized to `zero`.
pub fn has_normals(&self) -> bool {
self.has_normals
}
/// Indicate if the vertices contains tangents information.
///
/// **Note**: If this function return `false` all vertices has a tangent field
/// initialized to `zero`.
pub fn has_tangents(&self) -> bool {
self.has_tangents
}
/// Indicate if the vertices contains texture coordinates information.
///
/// **Note**: If this function return `false` all vertices has a tex_coord field
/// initialized to `zero`.
pub fn has_tex_coords(&self) -> bool {
self.has_tex_coords
}
fn apply_transform_position(pos: [f32; 3], transform: &Matrix4<f32>) -> Vector3<f32> {
let pos = Vector4::new(pos[0], pos[1], pos[2], 1.);
let res = transform * pos;
Vector3::new(res.x / res.w, res.y / res.w, res.z / res.w)
}
fn apply_transform_vector(vec: [f32; 3], transform: &Matrix4<f32>) -> Vector3<f32> {
let vec = Vector4::new(vec[0], vec[1], vec[2], 0.);
(transform * vec).truncate()
}
fn apply_transform_tangent(tangent: [f32; 4], transform: &Matrix4<f32>) -> Vector4<f32> {
let tang = Vector4::new(tangent[0], tangent[1], tangent[2], 0.);
let mut tang = transform * tang;
tang[3] = tangent[3];
tang
}
pub(crate) fn load(
mesh: &gltf::Mesh,
primitive_index: usize,
primitive: gltf::Primitive,
transform: &Matrix4<f32>,
data: &mut GltfData,
) -> Self {
#[cfg(not(feature = "names"))]
{
let _ = mesh;
}
let buffers = &data.buffers;
let reader = primitive.reader(|buffer| Some(&buffers[buffer.index()]));
let indices = reader
.read_indices()
.map(|indices| indices.into_u32().collect());
// Init vertices with the position
let mut vertices: Vec<_> = reader
.read_positions()
.unwrap_or_else(|| panic!("The model primitive doesn't contain positions"))
.map(|pos| Vertex {
position: Self::apply_transform_position(pos, transform),
..Default::default()
})
.collect();
// Fill normals
let has_normals = if let Some(normals) = reader.read_normals() {
for (i, normal) in normals.enumerate() {
vertices[i].normal = Self::apply_transform_vector(normal, transform).normalize();
}
true
} else {
false
};
// Fill tangents
let has_tangents = if let Some(tangents) = reader.read_tangents() {
for (i, tangent) in tangents.enumerate() {
let tangent = Self::apply_transform_tangent(tangent, transform);
vertices[i].tangent = tangent.truncate().normalize().extend(tangent.w);
}
true
} else {
false
};
// Texture coordinates
let has_tex_coords = if let Some(tex_coords) = reader.read_tex_coords(0) {
for (i, tex_coords) in tex_coords.into_f32().enumerate() {
vertices[i].tex_coords = Vector2::from(tex_coords);
}
true
} else {
false
};
Model {
#[cfg(feature = "names")]
mesh_name: mesh.name().map(String::from),
#[cfg(feature = "extras")]
mesh_extras: mesh.extras().clone(),
#[cfg(feature = "extras")]
primitive_extras: primitive.extras().clone(),
primitive_index,
vertices,
indices,
material: Material::load(primitive.material(), data),
mode: primitive.mode().into(),
has_normals,
has_tangents,
has_tex_coords,
}
}
}