1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
use core::convert::TryInto;
use super::{STANDARD, Config, chunked_encoder, PAD_BYTE};

///Encode arbitrary octets as base64.
///Returns a String.
///Convenience for `encode_config(input, base64::STANDARD);`.
///
///# Example
///
///```rust
///extern crate base64;
///
///fn main() {
///    let b64 = base64::encode(b"hello world");
///    println!("{}", b64);
///}
///```
pub fn encode<T: AsRef<[u8]>>(input: T) -> String {
    encode_config(input, STANDARD)
}

///Encode arbitrary octets as base64.
///Returns a String.
///
///# Example
///
///```rust
///extern crate base64;
///
///fn main() {
///    let b64 = base64::encode_config(b"hello world~", base64::STANDARD);
///    println!("{}", b64);
///
///    let b64_url = base64::encode_config(b"hello internet~", base64::URL_SAFE);
///    println!("{}", b64_url);
///}
///```
pub fn encode_config<T: AsRef<[u8]>>(input: T, config: Config) -> String {
    let mut buf = match encoded_size(input.as_ref().len(), config) {
        Some(n) => vec![0; n],
        None => panic!("integer overflow when calculating buffer size"),
    };

    encode_with_padding(input.as_ref(), config, buf.len(), &mut buf[..]);

    String::from_utf8(buf).expect("Invalid UTF8")
}

///Encode arbitrary octets as base64.
///Writes into the supplied output buffer, which will grow the buffer if needed.
///
///# Example
///
///```rust
///extern crate base64;
///
///fn main() {
///    let mut buf = String::new();
///    base64::encode_config_buf(b"hello world~", base64::STANDARD, &mut buf);
///    println!("{}", buf);
///
///    buf.clear();
///    base64::encode_config_buf(b"hello internet~", base64::URL_SAFE, &mut buf);
///    println!("{}", buf);
///}
///```
pub fn encode_config_buf<T: AsRef<[u8]>>(input: T, config: Config, buf: &mut String) {
    let input_bytes = input.as_ref();

    {
        let mut sink = chunked_encoder::StringSink::new(buf);
        let encoder = chunked_encoder::ChunkedEncoder::new(config);

        encoder
            .encode(input_bytes, &mut sink)
            .expect("Writing to a String shouldn't fail")
    }
}

/// Encode arbitrary octets as base64.
/// Writes into the supplied output buffer.
///
/// This is useful if you wish to avoid allocation entirely (e.g. encoding into a stack-resident
/// or statically-allocated buffer).
///
/// # Panics
///
/// If `output` is too small to hold the encoded version of `input`, a panic will result.
///
/// # Example
///
/// ```rust
/// extern crate base64;
///
/// fn main() {
///     let s = b"hello internet!";
///     let mut buf = Vec::new();
///     // make sure we'll have a slice big enough for base64 + padding
///     buf.resize(s.len() * 4 / 3 + 4, 0);
///
///     let bytes_written = base64::encode_config_slice(s,
///                             base64::STANDARD, &mut buf);
///
///     // shorten our vec down to just what was written
///     buf.resize(bytes_written, 0);
///
///     assert_eq!(s, base64::decode(&buf).unwrap().as_slice());
/// }
/// ```
pub fn encode_config_slice<T: AsRef<[u8]>>(input: T, config: Config, output: &mut [u8]) -> usize {
    let input_bytes = input.as_ref();

    let encoded_size = encoded_size(input_bytes.len(), config)
        .expect("usize overflow when calculating buffer size");

    let mut b64_output = &mut output[0..encoded_size];

    encode_with_padding(&input_bytes, config, encoded_size, &mut b64_output);

    encoded_size
}

/// B64-encode and pad (if configured).
///
/// This helper exists to avoid recalculating encoded_size, which is relatively expensive on short
/// inputs.
///
/// `encoded_size` is the encoded size calculated for `input`.
///
/// `output` must be of size `encoded_size`.
///
/// All bytes in `output` will be written to since it is exactly the size of the output.
fn encode_with_padding(input: &[u8], config: Config, encoded_size: usize, output: &mut [u8]) {
    debug_assert_eq!(encoded_size, output.len());

    let b64_bytes_written = encode_to_slice(input, output, config.char_set.encode_table());

    let padding_bytes = if config.pad {
        add_padding(input.len(), &mut output[b64_bytes_written..])
    } else {
        0
    };

    let encoded_bytes = b64_bytes_written
        .checked_add(padding_bytes)
        .expect("usize overflow when calculating b64 length");

    debug_assert_eq!(encoded_size, encoded_bytes);
}

#[inline]
fn read_u64(s: &[u8]) -> u64 {
    u64::from_be_bytes(s[..8].try_into().unwrap())
}

/// Encode input bytes to utf8 base64 bytes. Does not pad.
/// `output` must be long enough to hold the encoded `input` without padding.
/// Returns the number of bytes written.
#[inline]
pub fn encode_to_slice(input: &[u8], output: &mut [u8], encode_table: &[u8; 64]) -> usize {
    let mut input_index: usize = 0;

    const BLOCKS_PER_FAST_LOOP: usize = 4;
    const LOW_SIX_BITS: u64 = 0x3F;

    // we read 8 bytes at a time (u64) but only actually consume 6 of those bytes. Thus, we need
    // 2 trailing bytes to be available to read..
    let last_fast_index = input.len().saturating_sub(BLOCKS_PER_FAST_LOOP * 6 + 2);
    let mut output_index = 0;

    if last_fast_index > 0 {
        while input_index <= last_fast_index {
            // Major performance wins from letting the optimizer do the bounds check once, mostly
            // on the output side
            let input_chunk = &input[input_index..(input_index + (BLOCKS_PER_FAST_LOOP * 6 + 2))];
            let output_chunk = &mut output[output_index..(output_index + BLOCKS_PER_FAST_LOOP * 8)];

            // Hand-unrolling for 32 vs 16 or 8 bytes produces yields performance about equivalent
            // to unsafe pointer code on a Xeon E5-1650v3. 64 byte unrolling was slightly better for
            // large inputs but significantly worse for 50-byte input, unsurprisingly. I suspect
            // that it's a not uncommon use case to encode smallish chunks of data (e.g. a 64-byte
            // SHA-512 digest), so it would be nice if that fit in the unrolled loop at least once.
            // Plus, single-digit percentage performance differences might well be quite different
            // on different hardware.

            let input_u64 = read_u64(&input_chunk[0..]);

            output_chunk[0] = encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize];
            output_chunk[1] = encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize];
            output_chunk[2] = encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize];
            output_chunk[3] = encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize];
            output_chunk[4] = encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize];
            output_chunk[5] = encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize];
            output_chunk[6] = encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize];
            output_chunk[7] = encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize];

            let input_u64 = read_u64(&input_chunk[6..]);

            output_chunk[8] = encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize];
            output_chunk[9] = encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize];
            output_chunk[10] = encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize];
            output_chunk[11] = encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize];
            output_chunk[12] = encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize];
            output_chunk[13] = encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize];
            output_chunk[14] = encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize];
            output_chunk[15] = encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize];

            let input_u64 = read_u64(&input_chunk[12..]);

            output_chunk[16] = encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize];
            output_chunk[17] = encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize];
            output_chunk[18] = encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize];
            output_chunk[19] = encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize];
            output_chunk[20] = encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize];
            output_chunk[21] = encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize];
            output_chunk[22] = encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize];
            output_chunk[23] = encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize];

            let input_u64 = read_u64(&input_chunk[18..]);

            output_chunk[24] = encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize];
            output_chunk[25] = encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize];
            output_chunk[26] = encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize];
            output_chunk[27] = encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize];
            output_chunk[28] = encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize];
            output_chunk[29] = encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize];
            output_chunk[30] = encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize];
            output_chunk[31] = encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize];

            output_index += BLOCKS_PER_FAST_LOOP * 8;
            input_index += BLOCKS_PER_FAST_LOOP * 6;
        }
    }

    // Encode what's left after the fast loop.

    const LOW_SIX_BITS_U8: u8 = 0x3F;

    let rem = input.len() % 3;
    let start_of_rem = input.len() - rem;

    // start at the first index not handled by fast loop, which may be 0.

    while input_index < start_of_rem {
        let input_chunk = &input[input_index..(input_index + 3)];
        let output_chunk = &mut output[output_index..(output_index + 4)];

        output_chunk[0] = encode_table[(input_chunk[0] >> 2) as usize];
        output_chunk[1] =
            encode_table[((input_chunk[0] << 4 | input_chunk[1] >> 4) & LOW_SIX_BITS_U8) as usize];
        output_chunk[2] =
            encode_table[((input_chunk[1] << 2 | input_chunk[2] >> 6) & LOW_SIX_BITS_U8) as usize];
        output_chunk[3] = encode_table[(input_chunk[2] & LOW_SIX_BITS_U8) as usize];

        input_index += 3;
        output_index += 4;
    }

    if rem == 2 {
        output[output_index] = encode_table[(input[start_of_rem] >> 2) as usize];
        output[output_index + 1] = encode_table[((input[start_of_rem] << 4
            | input[start_of_rem + 1] >> 4)
            & LOW_SIX_BITS_U8) as usize];
        output[output_index + 2] =
            encode_table[((input[start_of_rem + 1] << 2) & LOW_SIX_BITS_U8) as usize];
        output_index += 3;
    } else if rem == 1 {
        output[output_index] = encode_table[(input[start_of_rem] >> 2) as usize];
        output[output_index + 1] =
            encode_table[((input[start_of_rem] << 4) & LOW_SIX_BITS_U8) as usize];
        output_index += 2;
    }

    output_index
}

/// calculate the base64 encoded string size, including padding if appropriate
pub fn encoded_size(bytes_len: usize, config: Config) -> Option<usize> {
    let rem = bytes_len % 3;

    let complete_input_chunks = bytes_len / 3;
    let complete_chunk_output = complete_input_chunks.checked_mul(4);

    if rem > 0 {
        if config.pad {
            complete_chunk_output.and_then(|c| c.checked_add(4))
        } else {
            let encoded_rem = match rem {
                1 => 2,
                2 => 3,
                _ => unreachable!("Impossible remainder"),
            };
            complete_chunk_output.and_then(|c| c.checked_add(encoded_rem))
        }
    } else {
        complete_chunk_output
    }
}

/// Write padding characters.
/// `output` is the slice where padding should be written, of length at least 2.
///
/// Returns the number of padding bytes written.
pub fn add_padding(input_len: usize, output: &mut [u8]) -> usize {
    let rem = input_len % 3;
    let mut bytes_written = 0;
    for _ in 0..((3 - rem) % 3) {
        output[bytes_written] = PAD_BYTE;
        bytes_written += 1;
    }

    bytes_written
}