Expand description
Basic data operations for dsq
This module provides fundamental operations like selection, filtering, mapping, and basic transformations that form the building blocks of more complex data processing pipelines.
Structs§
- Sort
Options - Sort options for specifying column and direction
Functions§
- add_
column - Add a column to a Value
- cast
- Cast column types
- count
- Count operation on Value
- drop
- Drop columns
- drop_
columns - Drop columns from a Value
- drop_
nulls - Drop null values
- explode
- Explode list columns into separate rows
- fill_
null - Fill null values with a constant
- filter
- Filter rows based on a predicate
- filter_
rows - Filter rows based on a predicate function
- filter_
values - Filter values based on a predicate function
- head
- Head operation on Value
- head_df
- Get the first n rows from a
DataFrame - map_
column - Apply a function to each element in a column
- melt
- Melt
DataFramefrom wide to long format - pivot
- Pivot
DataFramefrom long to wide format (placeholder) - rename
- Rename columns
- rename_
columns - Rename columns in a Value
- reverse
- Reverse operation on Value
- sample
- Sample rows from
DataFrame - select
- Select specific columns from a
DataFrame - select_
by_ index - Select columns by index
- select_
columns - Select columns from a Value (works with
DataFrame, Array, Object) - slice
- Slice operation on Value
- slice_
df - Get a slice of rows from a
DataFrame - sort
- Sort
DataFrameby columns - sort_
by_ columns - Sort by columns with sort options
- tail
- Tail operation on Value
- tail_df
- Get the last n rows from a
DataFrame - transpose
- Transpose
DataFrame - unique
- Unique operation on Value
- unique_
df - Get unique rows from
DataFrame - with_
column - Add a new column with a constant value