1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
/*
 * SPDX-FileCopyrightText: 2023 Tommaso Fontana
 * SPDX-FileCopyrightText: 2023 Inria
 * SPDX-FileCopyrightText: 2023 Sebastiano Vigna
 *
 * SPDX-License-Identifier: Apache-2.0 OR LGPL-2.1-or-later
 */

use common_traits::*;

use crate::codes::params::{DefaultReadParams, ReadParams};
use crate::traits::*;
use core::convert::Infallible;
use core::{mem, ptr};
use std::error::Error;

/// An internal shortcut to the double type of the word of a
/// [`WordRead`].
type BB<WR> = <<WR as WordRead>::Word as DoubleType>::DoubleType;

/// An implementation of [`BitRead`] and [`BitSeek`] for a [`WordRead`] and a
/// [`WordSeek`].
///
/// This implementation uses a bit buffer to store bits that are not yet read.
/// The buffer is sized as twice the word size of the underlying [`WordRead`].
/// Typically, the best choice is to have a buffer that is sized as `usize`,
/// which means that the word of the underlying [`WordRead`] should be half of
/// that (i.e., `u32` for a 64-bit architecture). However, results will vary
/// depending on the CPU.
///
/// The peek word is equal to the bit buffer. The value returned
/// by [`peek_bits`](crate::traits::BitRead::peek_bits) contains at least as
/// many bits as the word size plus one (extended with zeros beyond end of
/// stream).
///
/// This implementation is usually faster than
/// [`BitReader`](crate::impls::BitReader).
///
/// The additional type parameter `RP` is used to select the parameters for the
/// instantanous codes, but the casual user should be happy with the default
/// value. See [`ReadParams`] for more details.

#[derive(Debug)]
pub struct BufBitReader<E: Endianness, WR: WordRead, RP: ReadParams = DefaultReadParams>
where
    WR::Word: DoubleType,
{
    /// The [`WordRead`] used to fill the buffer.
    backend: WR,
    /// The 2-word bit buffer that is used to read the codes. It is never full,
    /// but it may be empty. Only the upper (BE) or lower (LE)
    /// `bits_in_buffer` bits are valid; the other bits are always zeroes.
    buffer: BB<WR>,
    /// Number of valid upper (BE) or lower (LE) bits in the buffer.
    /// It is always smaller than `BB::<WR>::BITS`.
    bits_in_buffer: usize,
    _marker: core::marker::PhantomData<(E, RP)>,
}

impl<E: Endianness, WR: WordRead + Clone, RP: ReadParams> core::clone::Clone
    for BufBitReader<E, WR, RP>
where
    WR::Word: DoubleType,
{
    fn clone(&self) -> Self {
        Self {
            backend: self.backend.clone(),
            buffer: self.buffer,
            bits_in_buffer: self.bits_in_buffer,
            _marker: core::marker::PhantomData,
        }
    }
}

impl<E: Endianness, WR: WordRead, RP: ReadParams> BufBitReader<E, WR, RP>
where
    WR::Word: DoubleType,
{
    /// Create a new [`BufBitReader`] around a [`WordRead`].
    ///
    /// # Example
    /// ```
    /// use dsi_bitstream::prelude::*;
    /// let words: [u32; 2] = [0x0043b59f, 0xccf16077];
    /// let word_reader = MemWordReader::new(&words);
    /// let mut buf_bit_reader = <BufBitReader<BE, _>>::new(word_reader);
    /// ```
    #[must_use]
    pub fn new(backend: WR) -> Self {
        check_tables(WR::Word::BITS + 1);
        Self {
            backend,
            buffer: BB::<WR>::ZERO,
            bits_in_buffer: 0,
            _marker: core::marker::PhantomData,
        }
    }

    ///  Return the backend, consuming this reader.
    pub fn into_inner(self) -> Result<WR, Infallible> {
        // SAFETY: forget(self) prevents double dropping backend
        let backend = unsafe { ptr::read(&self.backend) };
        mem::forget(self);
        Ok(backend)
    }
}

//
// Big-endian implementation
//

impl<WR: WordRead, RP: ReadParams> BufBitReader<BE, WR, RP>
where
    WR::Word: DoubleType,
{
    /// Ensure that in the buffer there are at least `WR::Word::BITS` bits to read.
    /// This method can be called only if there are at least
    /// `WR::Word::BITS` free bits in the buffer.
    #[inline(always)]
    fn refill(&mut self) -> Result<(), <WR as WordRead>::Error> {
        debug_assert!(BB::<WR>::BITS - self.bits_in_buffer >= WR::Word::BITS);

        let new_word: BB<WR> = self.backend.read_word()?.to_be().upcast();
        self.bits_in_buffer += WR::Word::BITS;
        self.buffer |= new_word << (BB::<WR>::BITS - self.bits_in_buffer);
        Ok(())
    }
}

impl<WR: WordRead, RP: ReadParams> BitRead<BE> for BufBitReader<BE, WR, RP>
where
    WR::Word: DoubleType + UpcastableInto<u64>,
    BB<WR>: CastableInto<u64>,
{
    type Error = <WR as WordRead>::Error;
    type PeekWord = BB<WR>;

    #[inline(always)]
    fn peek_bits(&mut self, n_bits: usize) -> Result<Self::PeekWord, Self::Error> {
        debug_assert!(n_bits > 0);
        debug_assert!(n_bits <= Self::PeekWord::BITS);

        // A peek can do at most one refill, otherwise we might lose data
        if n_bits > self.bits_in_buffer {
            self.refill()?;
        }

        debug_assert!(n_bits <= self.bits_in_buffer);

        // Move the n_bits highest bits of the buffer to the lowest
        Ok(self.buffer >> (BB::<WR>::BITS - n_bits))
    }

    #[inline(always)]
    fn skip_bits_after_table_lookup(&mut self, n_bits: usize) {
        self.bits_in_buffer -= n_bits;
        self.buffer <<= n_bits;
    }

    #[inline]
    fn read_bits(&mut self, mut n_bits: usize) -> Result<u64, Self::Error> {
        debug_assert!(n_bits <= 64);
        debug_assert!(self.bits_in_buffer < BB::<WR>::BITS);

        // most common path, we just read the buffer
        if n_bits <= self.bits_in_buffer {
            // Valid right shift of BB::<WR>::BITS - n_bits, even when n_bits is zero
            let result: u64 = (self.buffer >> (BB::<WR>::BITS - n_bits - 1) >> 1_u32).cast();
            self.bits_in_buffer -= n_bits;
            self.buffer <<= n_bits;
            return Ok(result);
        }

        let mut result: u64 =
            (self.buffer >> (BB::<WR>::BITS - 1 - self.bits_in_buffer) >> 1_u8).cast();
        n_bits -= self.bits_in_buffer;

        // Directly read to the result without updating the buffer
        while n_bits > WR::Word::BITS {
            let new_word: u64 = self.backend.read_word()?.to_be().upcast();
            result = (result << WR::Word::BITS) | new_word;
            n_bits -= WR::Word::BITS;
        }

        debug_assert!(n_bits > 0);
        debug_assert!(n_bits <= WR::Word::BITS);

        // get the final word
        let new_word = self.backend.read_word()?.to_be();
        self.bits_in_buffer = WR::Word::BITS - n_bits;
        // compose the remaining bits
        let upcasted: u64 = new_word.upcast();
        let final_bits: u64 = (upcasted >> self.bits_in_buffer).downcast();
        result = (result << (n_bits - 1) << 1) | final_bits;
        // and put the rest in the buffer
        self.buffer = (UpcastableInto::<BB<WR>>::upcast(new_word)
            << (BB::<WR>::BITS - self.bits_in_buffer - 1))
            << 1;

        Ok(result)
    }

    #[inline]
    fn read_unary(&mut self) -> Result<u64, Self::Error> {
        debug_assert!(self.bits_in_buffer < BB::<WR>::BITS);

        // count the zeros from the left
        let zeros: usize = self.buffer.leading_zeros() as _;

        // if we encountered an 1 in the bits_in_buffer we can return
        if zeros < self.bits_in_buffer {
            self.buffer = self.buffer << zeros << 1;
            self.bits_in_buffer -= zeros + 1;
            return Ok(zeros as u64);
        }

        let mut result: u64 = self.bits_in_buffer as _;

        loop {
            let new_word = self.backend.read_word()?.to_be();

            if new_word != WR::Word::ZERO {
                let zeros: usize = new_word.leading_zeros() as _;
                self.buffer =
                    UpcastableInto::<BB<WR>>::upcast(new_word) << (WR::Word::BITS + zeros) << 1;
                self.bits_in_buffer = WR::Word::BITS - zeros - 1;
                return Ok(result + zeros as u64);
            }
            result += WR::Word::BITS as u64;
        }
    }

    #[inline]
    fn skip_bits(&mut self, mut n_bits: usize) -> Result<(), Self::Error> {
        debug_assert!(self.bits_in_buffer < BB::<WR>::BITS);
        // happy case, just shift the buffer
        if n_bits <= self.bits_in_buffer {
            self.bits_in_buffer -= n_bits;
            self.buffer <<= n_bits;
            return Ok(());
        }

        n_bits -= self.bits_in_buffer;

        // skip words as needed
        while n_bits > WR::Word::BITS {
            let _ = self.backend.read_word()?;
            n_bits -= WR::Word::BITS;
        }

        // get the final word
        let new_word = self.backend.read_word()?.to_be();
        self.bits_in_buffer = WR::Word::BITS - n_bits;

        self.buffer = UpcastableInto::<BB<WR>>::upcast(new_word)
            << (BB::<WR>::BITS - 1 - self.bits_in_buffer)
            << 1;

        Ok(())
    }

    #[cfg(not(feature = "no_copy_impls"))]
    fn copy_to<F: Endianness>(
        &mut self,
        bit_write: &mut impl BitWrite<F>,
        mut n: u64,
    ) -> Result<(), Box<dyn Error + Send + Sync + 'static>> {
        let from_buffer = Ord::min(n, self.bits_in_buffer as _);
        self.buffer = self.buffer.rotate_left(from_buffer as _);

        bit_write.write_bits(self.buffer.cast(), from_buffer as usize)?;
        n -= from_buffer;

        if n == 0 {
            self.bits_in_buffer -= from_buffer as usize;
            return Ok(());
        }

        while n > WR::Word::BITS as u64 {
            bit_write.write_bits(self.backend.read_word()?.to_be().upcast(), WR::Word::BITS)?;
            n -= WR::Word::BITS as u64;
        }

        assert!(n > 0);
        let new_word = self.backend.read_word()?.to_be();
        self.bits_in_buffer = WR::Word::BITS - n as usize;
        bit_write.write_bits((new_word >> self.bits_in_buffer).upcast(), n as usize)?;
        self.buffer = UpcastableInto::<BB<WR>>::upcast(new_word)
            .rotate_right(WR::Word::BITS as u32 - n as u32);

        Ok(())
    }
}

impl<
        E: Error + Send + Sync + 'static,
        WR: WordRead<Error = E> + WordSeek<Error = E>,
        RP: ReadParams,
    > BitSeek for BufBitReader<BE, WR, RP>
where
    WR::Word: DoubleType,
{
    type Error = <WR as WordSeek>::Error;

    #[inline]
    fn get_bit_pos(&mut self) -> Result<u64, Self::Error> {
        Ok(self.backend.get_word_pos()? * WR::Word::BITS as u64 - self.bits_in_buffer as u64)
    }

    #[inline]
    fn set_bit_pos(&mut self, bit_index: u64) -> Result<(), Self::Error> {
        self.backend
            .set_word_pos(bit_index / WR::Word::BITS as u64)?;
        let bit_offset = (bit_index % WR::Word::BITS as u64) as usize;
        self.buffer = BB::<WR>::ZERO;
        self.bits_in_buffer = 0;
        if bit_offset != 0 {
            let new_word: BB<WR> = self.backend.read_word()?.to_be().upcast();
            self.bits_in_buffer = WR::Word::BITS - bit_offset;
            self.buffer = new_word << (BB::<WR>::BITS - self.bits_in_buffer);
        }
        Ok(())
    }
}

//
// Little-endian implementation
//

impl<WR: WordRead, RP: ReadParams> BufBitReader<LE, WR, RP>
where
    WR::Word: DoubleType,
{
    /// Ensure that in the buffer there are at least `WR::Word::BITS` bits to read.
    /// This method can be called only if there are at least
    /// `WR::Word::BITS` free bits in the buffer.
    #[inline(always)]
    fn refill(&mut self) -> Result<(), <WR as WordRead>::Error> {
        debug_assert!(BB::<WR>::BITS - self.bits_in_buffer >= WR::Word::BITS);

        let new_word: BB<WR> = self.backend.read_word()?.to_le().upcast();
        self.buffer |= new_word << self.bits_in_buffer;
        self.bits_in_buffer += WR::Word::BITS;
        Ok(())
    }
}

impl<WR: WordRead, RP: ReadParams> BitRead<LE> for BufBitReader<LE, WR, RP>
where
    WR::Word: DoubleType + UpcastableInto<u64>,
    BB<WR>: CastableInto<u64>,
{
    type Error = <WR as WordRead>::Error;
    type PeekWord = BB<WR>;

    #[inline(always)]
    fn peek_bits(&mut self, n_bits: usize) -> Result<Self::PeekWord, Self::Error> {
        debug_assert!(n_bits > 0);
        debug_assert!(n_bits <= Self::PeekWord::BITS);

        // A peek can do at most one refill, otherwise we might lose data
        if n_bits > self.bits_in_buffer {
            self.refill()?;
        }

        debug_assert!(n_bits <= self.bits_in_buffer);

        // Keep the n_bits lowest bits of the buffer
        let shamt = BB::<WR>::BITS - n_bits;
        Ok((self.buffer << shamt) >> shamt)
    }

    #[inline(always)]
    fn skip_bits_after_table_lookup(&mut self, n_bits: usize) {
        self.bits_in_buffer -= n_bits;
        self.buffer >>= n_bits;
    }

    #[inline]
    fn read_bits(&mut self, mut n_bits: usize) -> Result<u64, Self::Error> {
        debug_assert!(n_bits <= 64);
        debug_assert!(self.bits_in_buffer < BB::<WR>::BITS);

        // most common path, we just read the buffer
        if n_bits <= self.bits_in_buffer {
            let result: u64 = (self.buffer & ((BB::<WR>::ONE << n_bits) - BB::<WR>::ONE)).cast();
            self.bits_in_buffer -= n_bits;
            self.buffer >>= n_bits;
            return Ok(result);
        }

        let mut result: u64 = self.buffer.cast();
        let mut bits_in_res = self.bits_in_buffer;

        // Directly read to the result without updating the buffer
        while n_bits > WR::Word::BITS + bits_in_res {
            let new_word: u64 = self.backend.read_word()?.to_le().upcast();
            result |= new_word << bits_in_res;
            bits_in_res += WR::Word::BITS;
        }

        n_bits -= bits_in_res;

        debug_assert!(n_bits > 0);
        debug_assert!(n_bits <= WR::Word::BITS);

        // get the final word
        let new_word = self.backend.read_word()?.to_le();
        self.bits_in_buffer = WR::Word::BITS - n_bits;
        // compose the remaining bits
        let shamt = 64 - n_bits;
        let upcasted: u64 = new_word.upcast();
        let final_bits: u64 = ((upcasted << shamt) >> shamt).downcast();
        result |= final_bits << bits_in_res;
        // and put the rest in the buffer
        self.buffer = UpcastableInto::<BB<WR>>::upcast(new_word) >> n_bits;

        Ok(result)
    }

    #[inline]
    fn read_unary(&mut self) -> Result<u64, Self::Error> {
        debug_assert!(self.bits_in_buffer < BB::<WR>::BITS);

        // count the zeros from the right
        let zeros: usize = self.buffer.trailing_zeros() as usize;

        // if we encountered an 1 in the bits_in_buffer we can return
        if zeros < self.bits_in_buffer {
            self.buffer = self.buffer >> zeros >> 1;
            self.bits_in_buffer -= zeros + 1;
            return Ok(zeros as u64);
        }

        let mut result: u64 = self.bits_in_buffer as _;

        loop {
            let new_word = self.backend.read_word()?.to_le();

            if new_word != WR::Word::ZERO {
                let zeros: usize = new_word.trailing_zeros() as _;
                self.buffer = UpcastableInto::<BB<WR>>::upcast(new_word) >> zeros >> 1;
                self.bits_in_buffer = WR::Word::BITS - zeros - 1;
                return Ok(result + zeros as u64);
            }
            result += WR::Word::BITS as u64;
        }
    }

    #[inline]
    fn skip_bits(&mut self, mut n_bits: usize) -> Result<(), Self::Error> {
        debug_assert!(self.bits_in_buffer < BB::<WR>::BITS);
        // happy case, just shift the buffer
        if n_bits <= self.bits_in_buffer {
            self.bits_in_buffer -= n_bits;
            self.buffer >>= n_bits;
            return Ok(());
        }

        n_bits -= self.bits_in_buffer;

        // skip words as needed
        while n_bits > WR::Word::BITS {
            let _ = self.backend.read_word()?;
            n_bits -= WR::Word::BITS;
        }

        // get the final word
        let new_word = self.backend.read_word()?.to_le();
        self.bits_in_buffer = WR::Word::BITS - n_bits;
        self.buffer = UpcastableInto::<BB<WR>>::upcast(new_word) >> n_bits;

        Ok(())
    }

    #[cfg(not(feature = "no_copy_impls"))]
    fn copy_to<F: Endianness>(
        &mut self,
        bit_write: &mut impl BitWrite<F>,
        mut n: u64,
    ) -> Result<(), Box<dyn Error + Send + Sync + 'static>> {
        let from_buffer = Ord::min(n, self.bits_in_buffer as _);

        bit_write.write_bits(self.buffer.cast(), from_buffer as usize)?;

        self.buffer >>= from_buffer;
        n -= from_buffer;

        if n == 0 {
            self.bits_in_buffer -= from_buffer as usize;
            return Ok(());
        }

        while n > WR::Word::BITS as u64 {
            bit_write.write_bits(self.backend.read_word()?.to_le().upcast(), WR::Word::BITS)?;
            n -= WR::Word::BITS as u64;
        }

        assert!(n > 0);
        let new_word = self.backend.read_word()?.to_le();
        self.bits_in_buffer = WR::Word::BITS - n as usize;
        bit_write.write_bits(new_word.upcast(), n as usize)?;
        self.buffer = UpcastableInto::<BB<WR>>::upcast(new_word) >> n;
        Ok(())
    }
}

impl<
        E: Error + Send + Sync + 'static,
        WR: WordRead<Error = E> + WordSeek<Error = E>,
        RP: ReadParams,
    > BitSeek for BufBitReader<LE, WR, RP>
where
    WR::Word: DoubleType,
{
    type Error = <WR as WordSeek>::Error;

    #[inline]
    fn get_bit_pos(&mut self) -> Result<u64, Self::Error> {
        Ok(self.backend.get_word_pos()? * WR::Word::BITS as u64 - self.bits_in_buffer as u64)
    }

    #[inline]
    fn set_bit_pos(&mut self, bit_index: u64) -> Result<(), Self::Error> {
        self.backend
            .set_word_pos(bit_index / WR::Word::BITS as u64)?;

        let bit_offset = (bit_index % WR::Word::BITS as u64) as usize;
        self.buffer = BB::<WR>::ZERO;
        self.bits_in_buffer = 0;
        if bit_offset != 0 {
            let new_word: BB<WR> = self.backend.read_word()?.to_le().upcast();
            self.bits_in_buffer = WR::Word::BITS - bit_offset;
            self.buffer = new_word >> bit_offset;
        }
        Ok(())
    }
}

macro_rules! test_buf_bit_reader {
    ($f: ident, $word:ty) => {
        #[test]
        fn $f() -> Result<(), Box<dyn Error + Send + Sync + 'static>> {
            use super::MemWordWriterVec;
            use crate::{
                codes::{GammaRead, GammaWrite},
                prelude::{
                    len_delta, len_gamma, BufBitWriter, DeltaRead, DeltaWrite, MemWordReader,
                },
            };
            use rand::Rng;
            use rand::{rngs::SmallRng, SeedableRng};

            let mut buffer_be: Vec<$word> = vec![];
            let mut buffer_le: Vec<$word> = vec![];
            let mut big = super::BufBitWriter::<BE, _>::new(MemWordWriterVec::new(&mut buffer_be));
            let mut little = BufBitWriter::<LE, _>::new(MemWordWriterVec::new(&mut buffer_le));

            let mut r = SmallRng::seed_from_u64(0);
            const ITER: usize = 1_000_000;

            for _ in 0..ITER {
                let value = r.gen_range(0..128);
                assert_eq!(big.write_gamma(value)?, len_gamma(value));
                let value = r.gen_range(0..128);
                assert_eq!(little.write_gamma(value)?, len_gamma(value));
                let value = r.gen_range(0..128);
                assert_eq!(big.write_gamma(value)?, len_gamma(value));
                let value = r.gen_range(0..128);
                assert_eq!(little.write_gamma(value)?, len_gamma(value));
                let value = r.gen_range(0..128);
                assert_eq!(big.write_delta(value)?, len_delta(value));
                let value = r.gen_range(0..128);
                assert_eq!(little.write_delta(value)?, len_delta(value));
                let value = r.gen_range(0..128);
                assert_eq!(big.write_delta(value)?, len_delta(value));
                let value = r.gen_range(0..128);
                assert_eq!(little.write_delta(value)?, len_delta(value));
                let n_bits = r.gen_range(0..=64);
                if n_bits == 0 {
                    big.write_bits(0, 0)?;
                } else {
                    big.write_bits(1, n_bits)?;
                }
                let n_bits = r.gen_range(0..=64);
                if n_bits == 0 {
                    little.write_bits(0, 0)?;
                } else {
                    little.write_bits(1, n_bits)?;
                }
                let value = r.gen_range(0..128);
                assert_eq!(big.write_unary(value)?, value as usize + 1);
                let value = r.gen_range(0..128);
                assert_eq!(little.write_unary(value)?, value as usize + 1);
            }

            drop(big);
            drop(little);

            type ReadWord = $word;
            let be_trans: &[ReadWord] = unsafe {
                core::slice::from_raw_parts(
                    buffer_be.as_ptr() as *const ReadWord,
                    buffer_be.len()
                        * (core::mem::size_of::<$word>() / core::mem::size_of::<ReadWord>()),
                )
            };
            let le_trans: &[ReadWord] = unsafe {
                core::slice::from_raw_parts(
                    buffer_le.as_ptr() as *const ReadWord,
                    buffer_le.len()
                        * (core::mem::size_of::<$word>() / core::mem::size_of::<ReadWord>()),
                )
            };

            let mut big_buff = BufBitReader::<BE, _>::new(MemWordReader::new(be_trans));
            let mut little_buff = BufBitReader::<LE, _>::new(MemWordReader::new(le_trans));

            let mut r = SmallRng::seed_from_u64(0);

            for _ in 0..ITER {
                assert_eq!(big_buff.read_gamma()?, r.gen_range(0..128));
                assert_eq!(little_buff.read_gamma()?, r.gen_range(0..128));
                assert_eq!(big_buff.read_gamma()?, r.gen_range(0..128));
                assert_eq!(little_buff.read_gamma()?, r.gen_range(0..128));
                assert_eq!(big_buff.read_delta()?, r.gen_range(0..128));
                assert_eq!(little_buff.read_delta()?, r.gen_range(0..128));
                assert_eq!(big_buff.read_delta()?, r.gen_range(0..128));
                assert_eq!(little_buff.read_delta()?, r.gen_range(0..128));
                let n_bits = r.gen_range(0..=64);
                if n_bits == 0 {
                    assert_eq!(big_buff.read_bits(0)?, 0);
                } else {
                    assert_eq!(big_buff.read_bits(n_bits)?, 1);
                }
                let n_bits = r.gen_range(0..=64);
                if n_bits == 0 {
                    assert_eq!(little_buff.read_bits(0)?, 0);
                } else {
                    assert_eq!(little_buff.read_bits(n_bits)?, 1);
                }

                assert_eq!(big_buff.read_unary()?, r.gen_range(0..128));
                assert_eq!(little_buff.read_unary()?, r.gen_range(0..128));
            }

            Ok(())
        }
    };
}

test_buf_bit_reader!(test_u64, u64);
test_buf_bit_reader!(test_u32, u32);

test_buf_bit_reader!(test_u16, u16);