1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
/*
* SPDX-FileCopyrightText: 2023 Sebastiano Vigna
*
* SPDX-License-Identifier: Apache-2.0 OR LGPL-2.1-or-later
*/
//! Rice codes.
//!
//! Rice codes (AKA Golomb–Rice codes) are a form of approximated [Golomb
//! codes](crate::codes::golomb) in which the parameter `b` is a power of two.
//! This restriction makes the code less precise in modeling data with a
//! geometric distribution, but encoding and decoding can be performed without
//! any integer arithmetic, and much more quickly.
//!
//! For natural numbers distributed with a geometric distribution with base `p`,
//! the base-2 logarithm of the optimal Rice code is [`⌈log₂(log((√5 + 1)/2) /
//! log(1 - p))⌉`](log2_b). See [Aaron Kiely, "Selecting the Golomb parameter
//! in Rice coding", IPN progress report 42-159
//! (2004)](https://tda.jpl.nasa.gov/progress_report/42-159/159E.pdf).
use crate::traits::*;
/// Return the length of the Rice code for `n` with parameter `log2_b`.
#[must_use]
#[inline]
pub fn len_rice(n: u64, log2_b: usize) -> usize {
(n >> log2_b) as usize + 1 + log2_b
}
/// Return the optimal value of `log2_b` for a geometric distribution of base `p`.
pub fn log2_b(p: f64) -> usize {
((-((5f64.sqrt() + 1.0) / 2.0).ln() / (-p).ln_1p()).log2()).ceil() as usize
}
/// Trait for reading Rice codes.
pub trait RiceRead<E: Endianness>: BitRead<E> {
#[inline(always)]
fn read_rice(&mut self, log2_b: usize) -> Result<u64, Self::Error> {
Ok((self.read_unary()? << log2_b) + self.read_bits(log2_b)?)
}
}
/// Trait for writing Rice codes.
pub trait RiceWrite<E: Endianness>: BitWrite<E> {
#[inline]
fn write_rice(&mut self, n: u64, log2_b: usize) -> Result<usize, Self::Error> {
Ok(self.write_unary(n >> log2_b)? + self.write_bits(n, log2_b)?)
}
}
impl<E: Endianness, B: BitRead<E>> RiceRead<E> for B {}
impl<E: Endianness, B: BitWrite<E>> RiceWrite<E> for B {}
#[cfg(test)]
#[test]
fn test_log2_b() {
use crate::prelude::golomb::b;
let mut p = 1.0;
for _ in 0..100 {
p *= 0.9;
let golomb = b(p);
if golomb & -(golomb as i64) as u64 == golomb {
assert_eq!(golomb, 1 << log2_b(p));
}
}
}