1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
/*
 * SPDX-FileCopyrightText: 2023 Tommaso Fontana
 * SPDX-FileCopyrightText: 2023 Inria
 * SPDX-FileCopyrightText: 2023 Sebastiano Vigna
 *
 * SPDX-License-Identifier: Apache-2.0 OR LGPL-2.1-or-later
 */

use crate::codes::params::{DefaultWriteParams, WriteParams};
use crate::codes::unary_tables;
use crate::traits::*;
use common_traits::{CastableInto, Integer, Number, Scalar};

/// An implementation of [`BitWrite`] for a [`WordWrite`].
///
/// This implementation uses a bit buffer to store bits that are not yet written.
/// The size of the bit buffer is the size of the word used by the [`WordWrite`],
/// which on most platform should be `usize`.
///
/// The additional type parameter `WP` is used to select the parameters for the
/// instantanous codes, but the casual user should be happy with the default value.
/// See [`WriteParams`] for more details.

#[derive(Debug)]
pub struct BufBitWriter<E: DropHelper<WW, WP>, WW: WordWrite, WP: WriteParams = DefaultWriteParams>
{
    /// The [`WordWrite`] to which we will write words.
    backend: WW,
    /// The buffer where we store bits until we have a word worth of them.
    /// It might be empty, partial full or full.
    /// Note that only `bits_in_buffer` bits are valid: the rest have undefined value.
    buffer: WW::Word,
    /// Number of valid bits in the buffer, from zero
    /// to `WW::Word::BITS`, both included.
    bits_in_buffer: usize,
    _marker_endianness: core::marker::PhantomData<(E, WP)>,
}

impl<E: DropHelper<WW, WP>, WW: WordWrite, WP: WriteParams> BufBitWriter<E, WW, WP> {
    /// Create a new [`BufBitWriter`] around a [`WordWrite`].
    ///
    /// ### Example
    /// ```
    /// use dsi_bitstream::prelude::*;
    /// let buffer = Vec::<usize>::new();
    /// let word_writer = MemWordWriterVec::new(buffer);
    /// let mut buf_bit_writer = <BufBitWriter<BE, _>>::new(word_writer);
    pub fn new(backend: WW) -> Self {
        Self {
            backend,
            buffer: WW::Word::ZERO,
            bits_in_buffer: 0,
            _marker_endianness: core::marker::PhantomData,
        }
    }

    #[inline(always)]
    #[must_use]
    fn space_left_in_buffer(&self) -> usize {
        WW::Word::BITS - self.bits_in_buffer
    }
}

impl<E: DropHelper<WW, WP>, WW: WordWrite, WP: WriteParams> core::ops::Drop
    for BufBitWriter<E, WW, WP>
{
    fn drop(&mut self) {
        // During a drop we can't save anything if it goes bad :/
        let _ = E::flush(self);
    }
}

#[doc(hidden)]
/// Ignore. Inner trait needed for dispatching of drop logic based on endianess
/// of a [`BufBitWriter`]. This is public to avoid the leak of
/// private traits in public defs. A user should never need to implement this.
///
/// I discuss the need for this trait
/// [here](https://users.rust-lang.org/t/on-generic-associated-enum-and-type-comparisons/92072).
pub trait DropHelper<WW: WordWrite, WP: WriteParams>: Sized + Endianness {
    /// handle the drop
    fn flush(buf_bit_writer: &mut BufBitWriter<Self, WW, WP>) -> Result<(), WW::Error>;
}

impl<WW: WordWrite, WP: WriteParams> DropHelper<WW, WP> for BE {
    #[inline]
    fn flush(buf_bit_writer: &mut BufBitWriter<Self, WW, WP>) -> Result<(), WW::Error> {
        if buf_bit_writer.bits_in_buffer > 0 {
            buf_bit_writer.buffer <<= WW::Word::BITS - buf_bit_writer.bits_in_buffer;
            buf_bit_writer
                .backend
                .write_word(buf_bit_writer.buffer.to_be())?;
            buf_bit_writer.bits_in_buffer = 0;
        }
        Ok(())
    }
}

impl<WW: WordWrite, WP: WriteParams> BitWrite<BE> for BufBitWriter<BE, WW, WP>
where
    u64: CastableInto<WW::Word>,
{
    type Error = <WW as WordWrite>::Error;

    fn flush(mut self) -> Result<(), Self::Error> {
        BE::flush(&mut self)
    }

    #[inline]
    fn write_bits(&mut self, mut value: u64, n_bits: usize) -> Result<usize, Self::Error> {
        debug_assert!(n_bits <= 64);
        #[cfg(feature = "checks")]
        assert!(
            value & (1_u128 << n_bits).wrapping_sub(1) as u64 == value,
            "Error: value {} does not fit in {} bits",
            value,
            n_bits
        );

        #[cfg(test)]
        if n_bits < 64 {
            // We put garbage in the higher bits for testing
            value |= u64::MAX << n_bits;
        }

        let space_left_in_buffer = self.space_left_in_buffer();
        // Easy way out: we fit the buffer
        if n_bits <= space_left_in_buffer {
            if n_bits == 0 {
                // Handling this case algorithmically is a pain
                return Ok(0);
            }
            // n_bits might be 64 and the buffer might be empty
            self.buffer = self.buffer << (n_bits - 1) << 1;
            // Clean up bits higher than n_bits
            value = value << (64 - n_bits) >> (64 - n_bits);
            self.buffer |= value.cast();
            self.bits_in_buffer += n_bits;
            return Ok(n_bits);
        }

        // Load the bottom of the buffer, if necessary, and dump the whole buffer
        if space_left_in_buffer != 0 {
            self.buffer <<= space_left_in_buffer;
            // The first shift discards bits higher than n_bits
            self.buffer |= (value << (64 - n_bits) >> (64 - space_left_in_buffer)).cast();
        }
        self.backend.write_word(self.buffer.to_be())?;

        let mut to_write = n_bits - space_left_in_buffer;

        for _ in 0..to_write / WW::Word::BITS {
            to_write -= WW::Word::BITS;
            self.backend
                .write_word((value >> to_write).cast().to_be())?;
        }

        self.bits_in_buffer = to_write;
        // The first shift discards bits that should be ignored
        self.buffer = value.cast() & ((WW::Word::ONE << to_write) - WW::Word::ONE);
        Ok(n_bits)
    }

    #[inline]
    #[allow(clippy::collapsible_if)]
    fn write_unary_param<const USE_TABLE: bool>(
        &mut self,
        mut value: u64,
    ) -> Result<usize, Self::Error> {
        debug_assert_ne!(value, u64::MAX);
        if USE_TABLE {
            if let Some(len) = unary_tables::write_table_be(self, value)? {
                return Ok(len);
            }
        }

        let code_length = value + 1;
        let space_left_in_buffer = self.space_left_in_buffer() as u64;

        // Easy way out: we fit the buffer
        if code_length <= space_left_in_buffer {
            self.bits_in_buffer += code_length as usize;
            self.buffer = self.buffer << value << 1; // Might be code_length == WW::Word::BITS
            self.buffer |= WW::Word::ONE;
            return Ok(code_length as usize);
        }

        if space_left_in_buffer == WW::Word::BITS as _ {
            // There's nothing in the buffer, and we need to write WW::Word::BITS zeros
            self.backend.write_word(WW::Word::ZERO)?;
        } else {
            self.buffer <<= space_left_in_buffer;
            self.backend.write_word(self.buffer.to_be())?;
        }

        value -= space_left_in_buffer;

        for _ in 0..value / WW::Word::BITS as u64 {
            self.backend.write_word(WW::Word::ZERO)?;
        }

        self.buffer = WW::Word::ONE;
        self.bits_in_buffer = (value % WW::Word::BITS as u64) as usize + 1;
        Ok(code_length as usize)
    }
}

impl<WW: WordWrite, WP: WriteParams> DropHelper<WW, WP> for LE {
    #[inline]
    fn flush(buf_bit_writer: &mut BufBitWriter<Self, WW, WP>) -> Result<(), WW::Error> {
        if buf_bit_writer.bits_in_buffer > 0 {
            buf_bit_writer.buffer >>= WW::Word::BITS - buf_bit_writer.bits_in_buffer;
            buf_bit_writer
                .backend
                .write_word(buf_bit_writer.buffer.to_le())?;
            buf_bit_writer.bits_in_buffer = 0;
        }
        Ok(())
    }
}

impl<WW: WordWrite, WP: WriteParams> BitWrite<LE> for BufBitWriter<LE, WW, WP>
where
    u64: CastableInto<WW::Word>,
{
    type Error = <WW as WordWrite>::Error;

    fn flush(mut self) -> Result<(), Self::Error> {
        LE::flush(&mut self)
    }

    #[inline]
    fn write_bits(&mut self, mut value: u64, n_bits: usize) -> Result<usize, Self::Error> {
        debug_assert!(n_bits <= 64);
        #[cfg(feature = "checks")]
        assert!(
            value & (1_u128 << n_bits).wrapping_sub(1) as u64 == value,
            "Error: value {} does not fit in {} bits",
            value,
            n_bits
        );

        #[cfg(test)]
        if n_bits < 64 {
            // We put garbage in the higher bits for testing
            value |= u64::MAX << n_bits;
        }

        let space_left_in_buffer = self.space_left_in_buffer();
        // Easy way out: we fit the buffer
        if n_bits <= space_left_in_buffer {
            if n_bits == 0 {
                // Handling this case algorithmically is a pain
                return Ok(0);
            }
            // to_write might be 64 and the buffer might be empty
            self.buffer = self.buffer >> (n_bits - 1) >> 1;
            self.buffer |= value.cast() << (WW::Word::BITS - n_bits);
            self.bits_in_buffer += n_bits;
            return Ok(n_bits);
        }

        // Load the top of the buffer, if necessary, and dump the whole buffer
        if space_left_in_buffer != 0 {
            self.buffer >>= space_left_in_buffer;
            self.buffer |= value.cast() << self.bits_in_buffer;
        }
        self.backend.write_word(self.buffer.to_le())?;

        let to_write = n_bits - space_left_in_buffer;
        value >>= space_left_in_buffer;

        for _ in 0..to_write / WW::Word::BITS {
            self.backend.write_word(value.cast().to_le())?;
            // This might be executed with WW::Word == u64,
            // but it cannot be executed with WW::Word == u128
            value = value >> (WW::Word::BITS - 1) >> 1;
        }

        self.bits_in_buffer = to_write % WW::Word::BITS;
        self.buffer = value.cast().rotate_right(self.bits_in_buffer as u32);
        Ok(n_bits)
    }

    #[inline]
    #[allow(clippy::collapsible_if)]
    fn write_unary_param<const USE_TABLE: bool>(
        &mut self,
        mut value: u64,
    ) -> Result<usize, Self::Error> {
        debug_assert_ne!(value, u64::MAX);
        if USE_TABLE {
            if let Some(len) = unary_tables::write_table_le(self, value)? {
                return Ok(len);
            }
        }

        let code_length = value + 1;
        let space_left_in_buffer = self.space_left_in_buffer() as u64;

        // Easy way out: we fit the buffer
        if code_length <= space_left_in_buffer {
            self.bits_in_buffer += code_length as usize;
            self.buffer = self.buffer >> value >> 1; // Might be code_length == WW::Word::BITS
            self.buffer |= WW::Word::ONE << (WW::Word::BITS - 1);
            return Ok(code_length as usize);
        }

        if space_left_in_buffer == WW::Word::BITS as _ {
            // There's nothing in the buffer, and we need to write WW::Word::BITS zeros
            self.backend.write_word(WW::Word::ZERO)?;
        } else {
            self.buffer >>= space_left_in_buffer;
            self.backend.write_word(self.buffer.to_le())?;
        }

        value -= space_left_in_buffer;

        for _ in 0..value / WW::Word::BITS as u64 {
            self.backend.write_word(WW::Word::ZERO)?;
        }

        value %= WW::Word::BITS as u64;

        self.buffer = WW::Word::ONE << (WW::Word::BITS - 1);
        self.bits_in_buffer = value as usize + 1;
        Ok(code_length as usize)
    }
}

macro_rules! test_buf_bit_writer {
    ($f: ident, $word:ty) => {
        #[test]
        fn $f() -> Result<(), Box<dyn std::error::Error>> {
            use super::MemWordWriterVec;
            use crate::{
                codes::{GammaRead, GammaWrite},
                prelude::{
                    len_delta, len_gamma, BufBitReader, DeltaRead, DeltaWrite, MemWordReader,
                },
            };
            use rand::Rng;
            use rand::{rngs::SmallRng, SeedableRng};

            let mut buffer_be: Vec<$word> = vec![];
            let mut buffer_le: Vec<$word> = vec![];
            let mut big = BufBitWriter::<BE, _>::new(MemWordWriterVec::new(&mut buffer_be));
            let mut little = BufBitWriter::<LE, _>::new(MemWordWriterVec::new(&mut buffer_le));

            let mut r = SmallRng::seed_from_u64(0);
            const ITER: usize = 1_000_000;

            for _ in 0..ITER {
                let value = r.gen_range(0..128);
                assert_eq!(big.write_gamma(value)?, len_gamma(value));
                let value = r.gen_range(0..128);
                assert_eq!(little.write_gamma(value)?, len_gamma(value));
                let value = r.gen_range(0..128);
                assert_eq!(big.write_gamma(value)?, len_gamma(value));
                let value = r.gen_range(0..128);
                assert_eq!(little.write_gamma(value)?, len_gamma(value));
                let value = r.gen_range(0..128);
                assert_eq!(big.write_delta(value)?, len_delta(value));
                let value = r.gen_range(0..128);
                assert_eq!(little.write_delta(value)?, len_delta(value));
                let value = r.gen_range(0..128);
                assert_eq!(big.write_delta(value)?, len_delta(value));
                let value = r.gen_range(0..128);
                assert_eq!(little.write_delta(value)?, len_delta(value));
                let n_bits = r.gen_range(0..=64);
                if n_bits == 0 {
                    big.write_bits(0, 0)?;
                } else {
                    big.write_bits(r.gen::<u64>() & u64::MAX >> 64 - n_bits, n_bits)?;
                }
                let n_bits = r.gen_range(0..=64);
                if n_bits == 0 {
                    little.write_bits(0, 0)?;
                } else {
                    little.write_bits(r.gen::<u64>() & u64::MAX >> 64 - n_bits, n_bits)?;
                }
                let value = r.gen_range(0..128);
                assert_eq!(big.write_unary_param::<false>(value)?, value as usize + 1);
                let value = r.gen_range(0..128);
                assert_eq!(
                    little.write_unary_param::<false>(value)?,
                    value as usize + 1
                );
                let value = r.gen_range(0..128);
                assert_eq!(big.write_unary_param::<true>(value)?, value as usize + 1);
                let value = r.gen_range(0..128);
                assert_eq!(little.write_unary_param::<true>(value)?, value as usize + 1);
            }

            drop(big);
            drop(little);

            type ReadWord = u16;
            let be_trans: &[ReadWord] = unsafe {
                core::slice::from_raw_parts(
                    buffer_be.as_ptr() as *const ReadWord,
                    buffer_be.len()
                        * (core::mem::size_of::<$word>() / core::mem::size_of::<ReadWord>()),
                )
            };
            let le_trans: &[ReadWord] = unsafe {
                core::slice::from_raw_parts(
                    buffer_le.as_ptr() as *const ReadWord,
                    buffer_le.len()
                        * (core::mem::size_of::<$word>() / core::mem::size_of::<ReadWord>()),
                )
            };

            let mut big_buff = BufBitReader::<BE, _>::new(MemWordReader::new(be_trans));
            let mut little_buff = BufBitReader::<LE, _>::new(MemWordReader::new(le_trans));

            let mut r = SmallRng::seed_from_u64(0);

            for _ in 0..ITER {
                assert_eq!(big_buff.read_gamma()?, r.gen_range(0..128));
                assert_eq!(little_buff.read_gamma()?, r.gen_range(0..128));
                assert_eq!(big_buff.read_gamma()?, r.gen_range(0..128));
                assert_eq!(little_buff.read_gamma()?, r.gen_range(0..128));
                assert_eq!(big_buff.read_delta()?, r.gen_range(0..128));
                assert_eq!(little_buff.read_delta()?, r.gen_range(0..128));
                assert_eq!(big_buff.read_delta()?, r.gen_range(0..128));
                assert_eq!(little_buff.read_delta()?, r.gen_range(0..128));
                let n_bits = r.gen_range(0..=64);
                if n_bits == 0 {
                    assert_eq!(big_buff.read_bits(0)?, 0);
                } else {
                    assert_eq!(
                        big_buff.read_bits(n_bits)?,
                        r.gen::<u64>() & u64::MAX >> 64 - n_bits
                    );
                }
                let n_bits = r.gen_range(0..=64);
                if n_bits == 0 {
                    assert_eq!(little_buff.read_bits(0)?, 0);
                } else {
                    assert_eq!(
                        little_buff.read_bits(n_bits)?,
                        r.gen::<u64>() & u64::MAX >> 64 - n_bits
                    );
                }

                assert_eq!(big_buff.read_unary()?, r.gen_range(0..128));
                assert_eq!(little_buff.read_unary()?, r.gen_range(0..128));
                assert_eq!(big_buff.read_unary()?, r.gen_range(0..128));
                assert_eq!(little_buff.read_unary()?, r.gen_range(0..128));
            }

            Ok(())
        }
    };
}

test_buf_bit_writer!(test_u128, u128);
test_buf_bit_writer!(test_u64, u64);
test_buf_bit_writer!(test_u32, u32);

test_buf_bit_writer!(test_u16, u16);
test_buf_bit_writer!(test_usize, usize);