1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
//! A binary search tree which maps cardinal values to ordinal values
//!
//! Example usage:
//! ```
//! use ds_ext::Tree;
//!
//! let mut tree = Tree::new();
//! tree.insert(1);
//! assert_eq!(tree.size(), 1);
//!
//! tree.insert(2);
//! assert_eq!(tree.size(), 2);
//!
//! tree.insert(2);
//! assert_eq!(tree.size(), 2);
//!
//! tree.insert(3);
//! tree.remove(3);
//! assert_eq!(tree.size(), 2);
//!
//! tree.insert(3);
//! tree.remove(2);
//! assert_eq!(tree.size(), 2);
//!
//! tree.insert(16);
//! tree.insert(8);
//! tree.insert(24);
//! tree.remove(16);
//!
//! assert_eq!(tree.size(), 4);
//!
//! tree.remove(1);
//! assert_eq!(tree.size(), 3);
//! ```

use std::cmp::Ordering;
use std::collections::HashMap;
use std::fmt;

use get_size::GetSize;
use get_size_derive::*;

macro_rules! assert_bounds {
    ($i:expr, $max:expr) => {
        assert!(
            $i < $max,
            "ordinal {} is out of bounds for tree with max size {}",
            $i,
            $max
        );
    };
}

#[derive(Copy, Clone, Debug, GetSize)]
struct Node {
    size: usize,
    left: Option<usize>,
    right: Option<usize>,
}

impl Node {
    fn new() -> Self {
        Self {
            size: 1,
            left: None,
            right: None,
        }
    }
}

type Nodes = HashMap<usize, Node>;

/// A binary search tree which maps cardinal values to ordinal values
#[derive(Clone, GetSize)]
pub struct Tree {
    nodes: Nodes,
    root: Option<usize>,
}

impl Tree {
    /// Construct a new [`Tree`].
    pub fn new() -> Self {
        Self {
            nodes: HashMap::new(),
            root: None,
        }
    }

    /// Construct a new [`Tree`] with the given `capacity`.
    pub fn with_capacity(capacity: usize) -> Self {
        Self {
            nodes: HashMap::with_capacity(capacity),
            root: None,
        }
    }

    /// Remove all nodes from this [`Tree`].
    pub fn clear(&mut self) {
        self.nodes.clear();
        self.root = None;

        debug_assert_eq!(self.size(), 0);
    }

    /// Return `true` if this [`Tree`] has zero nodes.
    pub fn is_empty(&self) -> bool {
        self.nodes.is_empty()
    }

    /// Check the cardinal size of this [`Tree`].
    pub fn size(&self) -> usize {
        self.nodes.len()
    }

    /// Insert an `ordinal` into this [`Tree`] and return `false` if it was already present.
    ///
    /// Panics:
    ///  - `if ordinal >= self.max_size()`
    pub fn insert(&mut self, ordinal: usize) -> bool {
        debug_assert!(self.is_valid());

        let new = if let Some(root) = self.root {
            insert(&mut self.nodes, root, ordinal)
        } else {
            self.nodes.insert(ordinal, Node::new());
            self.root = Some(ordinal);
            true
        };

        debug_assert!(self.is_valid());

        new
    }

    /// Find the ordinal of the given `cardinal`.
    ///
    /// Panics:
    ///  - `if cardinal >= self.size()`
    pub fn ordinal(&self, cardinal: usize) -> usize {
        assert_bounds!(cardinal, self.nodes.len());
        debug_assert!(self.is_valid());
        search(&self.nodes, self.root.as_ref().expect("root"), cardinal)
    }

    /// Remove the given `ordinal` from this [`Tree`] and return `true` if it was present.
    ///
    /// Panics:
    ///  - `if ordinal >= self.max_size()`
    pub fn remove(&mut self, ordinal: usize) -> bool {
        debug_assert!(self.is_valid());

        if let Some(root) = self.root {
            if root == ordinal {
                self.root = remove_inner(&mut self.nodes, root);

                debug_assert!(self.is_valid());

                true
            } else {
                let removed = remove(&mut self.nodes, root, ordinal);
                debug_assert!(self.is_valid());
                removed
            }
        } else {
            false
        }
    }

    fn is_valid(&self) -> bool {
        if let Some(root) = self.root.as_ref() {
            assert_eq!(self.nodes.get(root).expect("root").size, self.size());
            is_valid(&self.nodes, root)
        } else {
            assert!(self.is_empty());
            true
        }
    }
}

impl fmt::Debug for Tree {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.write_str("[")?;

        if let Some(root) = self.root.as_ref() {
            fmt_node(&self.nodes, root, f)?;
        }

        f.write_str("]")
    }
}

fn fmt_node(nodes: &Nodes, ordinal: &usize, f: &mut fmt::Formatter) -> fmt::Result {
    let node = nodes.get(ordinal).expect("node");

    if let Some(left) = node.left.as_ref() {
        fmt_node(nodes, left, f)?;
        f.write_str(" ")?;
    }

    write!(f, "{}", ordinal)?;

    if let Some(right) = node.right.as_ref() {
        f.write_str(" ")?;
        fmt_node(nodes, right, f)?;
    }

    Ok(())
}

fn is_valid(nodes: &Nodes, ordinal: &usize) -> bool {
    fn count(nodes: &Nodes, ordinal: Option<&usize>) -> usize {
        if let Some(ordinal) = ordinal {
            let node = nodes.get(ordinal).expect("node");
            let size = count(nodes, node.left.as_ref()) + count(nodes, node.right.as_ref()) + 1;
            assert_eq!(
                node.size, size,
                "node {}: {:?} should have a size of {}",
                ordinal, node, size
            );
            size
        } else {
            0
        }
    }

    let expected = nodes.get(ordinal).expect("node").size;
    let actual = count(&nodes, Some(ordinal));

    assert_eq!(
        expected, actual,
        "node {} should have a size of {}, not {}",
        ordinal, expected, actual
    );

    true
}

#[inline]
fn search(nodes: &Nodes, ordinal: &usize, cardinal: usize) -> usize {
    let node = nodes.get(ordinal).expect("node");

    debug_assert!(
        cardinal < node.size,
        "node of size {} cannot contain cardinal {}",
        node.size,
        cardinal
    );

    match (node.left.as_ref(), node.right.as_ref()) {
        (None, None) => match cardinal {
            0 => *ordinal,
            _ => unreachable!(),
        },
        (Some(left), None) => {
            if cardinal == node.size - 1 {
                *ordinal
            } else {
                search(nodes, left, cardinal)
            }
        }
        (None, Some(right)) => {
            if cardinal == 0 {
                *ordinal
            } else {
                search(nodes, right, cardinal - 1)
            }
        }
        (Some(left_ordinal), Some(right_ordinal)) => {
            let left = nodes.get(left_ordinal).expect("left");
            if cardinal < left.size {
                search(nodes, left_ordinal, cardinal)
            } else if cardinal == left.size {
                *ordinal
            } else {
                search(nodes, right_ordinal, cardinal - (left.size + 1))
            }
        }
    }
}

#[inline]
fn insert(nodes: &mut Nodes, ordinal: usize, target: usize) -> bool {
    let mut node = *nodes.get(&ordinal).expect("node");

    let new = match ordinal.cmp(&target) {
        Ordering::Greater => {
            if let Some(left) = node.left {
                insert(nodes, left, target)
            } else {
                node.left = Some(target);
                nodes.insert(target, Node::new());
                true
            }
        }
        Ordering::Equal => false,
        Ordering::Less => {
            if let Some(right) = node.right {
                insert(nodes, right, target)
            } else {
                node.right = Some(target);
                nodes.insert(target, Node::new());
                true
            }
        }
    };

    if new {
        node.size += 1;
        nodes.insert(ordinal, node);
    }

    new
}

#[inline]
fn remove(nodes: &mut Nodes, ordinal: usize, target: usize) -> bool {
    let mut node = *nodes.get(&ordinal).expect("node");

    let removed = match ordinal.cmp(&target) {
        Ordering::Greater => {
            if let Some(left) = node.left {
                if left == target {
                    node.left = remove_inner(nodes, left);
                    true
                } else {
                    remove(nodes, left, target)
                }
            } else {
                false
            }
        }
        Ordering::Less => {
            if let Some(right) = node.right {
                if right == target {
                    node.right = remove_inner(nodes, right);
                    true
                } else {
                    remove(nodes, right, target)
                }
            } else {
                false
            }
        }
        Ordering::Equal => unreachable!("a node cannot delete itself"),
    };

    if removed {
        node.size -= 1;
        nodes.insert(ordinal, node);
    }

    removed
}

#[inline]
fn remove_inner(nodes: &mut Nodes, node: usize) -> Option<usize> {
    debug_assert!(is_valid(nodes, &node));

    let mut deleted = nodes.remove(&node).expect("node");

    let new_node = match (deleted.left, deleted.right) {
        (None, None) => None,
        (Some(left), None) => {
            // move the left child up
            Some(left)
        }
        (None, Some(right)) => {
            // move the right child up
            Some(right)
        }
        (Some(_left), Some(right)) => {
            let inorder_successor = min(nodes, &right);

            if inorder_successor == right {
                deleted.right = remove_inner(nodes, right);
            } else {
                assert!(remove(nodes, right, inorder_successor));
                debug_assert!(is_valid(nodes, &right));
            }

            deleted.size -= 1;
            nodes.insert(inorder_successor, deleted);

            debug_assert!(is_valid(nodes, &inorder_successor));

            Some(inorder_successor)
        }
    };

    new_node
}

#[inline]
fn min(nodes: &Nodes, ordinal: &usize) -> usize {
    let node = nodes.get(&ordinal).expect("node");
    if let Some(left) = node.left.as_ref() {
        min(nodes, left)
    } else {
        *ordinal
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use rand::Rng;
    use std::collections::BTreeSet;

    #[test]
    fn test_tree() {
        let mut rng = rand::thread_rng();

        for size in 0..100 {
            let mut order = BTreeSet::new();
            let mut tree = Tree::new();

            for _ in 0..size {
                let ord = rng.gen();
                order.insert(ord);
                tree.insert(ord);
            }

            for _ in 0..(size >> 1) {
                let ord = tree.ordinal(rng.gen_range(0..tree.size()));

                order.remove(&ord);
                tree.remove(ord);

                assert_eq!(order.len(), tree.size());
            }

            let mut i = 0;
            for ord in order {
                assert_eq!(ord, tree.ordinal(i));
                i += 1;
            }
        }
    }
}