1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
#[cfg(test)]
mod tests_double_map;
use core::borrow::Borrow;
use core::default::Default;
use core::fmt::{self, Debug};
use core::hash::{BuildHasher, Hash};
use core::hint::unreachable_unchecked;
use core::iter::{Extend, FromIterator};
use core::mem;
use std::collections::hash_map;
use std::collections::HashMap;
use std::collections::TryReserveError;
/// A hash map with double keys implemented as wrapper above two
/// [`HashMaps`](`std::collections::HashMap`).
///
/// Internally, two [`HashMap`](`std::collections::HashMap`) are created. One of type
/// `HashMap<K1, (K2, V)>` to hold the `(K2, V)` tuple, and second one of type
/// `HashMap<K2, K1>` just for holding the primary key of type `K1`.
/// We hold the `(K2, V)` tuple inside first `Hashmap` for synchronization purpose,
/// so that we can organize checking that both primary key of type `K1` and the
/// secondary key is of type `K2` refer to the same value, and so on.
/// Keys may be the same or different type.
///
/// By default, [`DHashMap`] as [`HashMap`](`std::collections::HashMap`)
/// uses a hashing algorithm selected to provide
/// resistance against HashDoS attacks. The algorithm is randomly seeded, and a
/// reasonable best-effort is made to generate this seed from a high quality,
/// secure source of randomness provided by the host without blocking the
/// program. Because of this, the randomness of the seed depends on the output
/// quality of the system's random number generator when the seed is created.
/// In particular, seeds generated when the system's entropy pool is abnormally
/// low such as during system boot may be of a lower quality.
///
/// The default hashing algorithm, like in [`HashMap`](`std::collections::HashMap`),
/// is currently SipHash 1-3, though this is
/// subject to change at any point in the future. While its performance is very
/// competitive for medium sized keys, other hashing algorithms will outperform
/// it for small keys like integers as well as large keys like long
/// strings, though those algorithms will typically *not* protect against
/// attacks such as HashDoS.
///
/// The hashing algorithm can be replaced on a per-[`DHashMap`] basis using the
/// [`default`](`std::default::Default::default`), [`with_hasher`](`DHashMap::with_hasher`),
/// and [`with_capacity_and_hasher`](`DHashMap::with_capacity_and_hasher`) methods.
/// There are many alternative [hashing algorithms available on crates.io].
///
/// It is required that the keys implement the [`Eq`] and
/// [`Hash`](`core::hash::Hash`) traits, although
/// this can frequently be achieved by using `#[derive(PartialEq, Eq, Hash)]`.
/// If you implement these yourself, it is important that the following
/// property holds:
///
/// ```text
/// k1 == k2 -> hash(k1) == hash(k2)
/// ```
///
/// In other words, if two keys are equal, their hashes must be equal.
///
/// It is a logic error for a key to be modified in such a way that the key's
/// hash, as determined by the [`Hash`] trait, or its equality, as determined by
/// the [`Eq`] trait, changes while it is in the map. This is normally only
/// possible through [`Cell`](`std::cell::Cell`), [`RefCell`](`std::cell::RefCell`),
/// global state, I/O, or unsafe code.
/// The behavior resulting from such a logic error is not specified, but will
/// not result in undefined behavior. This could include panics, incorrect results,
/// aborts, memory leaks, and non-termination.
///
/// [hashing algorithms available on crates.io]: https://crates.io/keywords/hasher
#[derive(Clone)]
pub struct DHashMap<K1, K2, V, S = hash_map::RandomState> {
value_map: HashMap<K1, (K2, V), S>,
key_map: HashMap<K2, K1, S>,
}
impl<K1, K2, V> DHashMap<K1, K2, V, hash_map::RandomState> {
/// Creates a new empty [`DHashMap`]s with [`RandomState`](std::collections::hash_map::RandomState)
/// type of hash builder to hash keys.
///
/// The primary key is of type `K1` and the secondary key is of type `K2`.
/// The value is of type `V`.
///
/// Internally, two [`HashMap`](`std::collections::HashMap`) are created. One of type
/// `HashMap<K1, (K2, V)>` to hold the `(K2, V)` tuple, and second one of type
/// `HashMap<K2, K1>` just for holding the primary key of type `K1`.
/// We hold the `(K2, V)` tuple inside first `Hashmap` for synchronization purpose,
/// so that we can organize checking both primary key of type `K1` and the
/// secondary key is of type `K2` refer to the same value, and so on.
///
/// The hash map is initially created with a capacity of 0, so it will not allocate until
/// it is first inserted into.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
/// let mut map: DHashMap<u32, &str, i32> = DHashMap::new();
///
/// // The created DHashMap holds none elements
/// assert_eq!(map.len(), 0);
///
/// // The created DHashMap also doesn't allocate memory
/// assert_eq!(map.capacity(), 0);
///
/// // Now we insert element inside created DHashMap
/// map.insert(1, "One", 1);
/// // We can see that the DHashMap holds 1 element
/// assert_eq!(map.len(), 1);
/// // And it also allocates some capacity (by default it starts from 3 elements)
/// assert!(map.capacity() > 1);
/// ```
#[inline]
#[must_use]
pub fn new() -> DHashMap<K1, K2, V, hash_map::RandomState> {
DHashMap {
value_map: HashMap::new(),
key_map: HashMap::new(),
}
}
/// Creates an empty [`DHashMap`] with the specified capacity.
///
/// The hash map will be able to hold at least `capacity` elements without
/// reallocating. If `capacity` is 0, the hash map will not allocate.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
/// let mut map: DHashMap<&str, i32, &str> = DHashMap::with_capacity(5);
///
/// // The created DHashMap holds none elements
/// assert_eq!(map.len(), 0);
/// // But it can hold at least 5 elements without reallocating
/// let empty_map_capacity = map.capacity();
/// assert!(empty_map_capacity >= 5);
///
/// // Now we insert some 5 elements inside created DHashMap
/// map.insert("One", 1, "a");
/// map.insert("Two", 2, "b");
/// map.insert("Three", 3, "c");
/// map.insert("Four", 4, "d");
/// map.insert("Five", 5, "e");
///
/// // We can see that the DHashMap holds 5 elements
/// assert_eq!(map.len(), 5);
/// // But its capacity isn't changed
/// assert_eq!(map.capacity(), empty_map_capacity)
/// ```
#[inline]
#[must_use]
pub fn with_capacity(capacity: usize) -> DHashMap<K1, K2, V, hash_map::RandomState> {
DHashMap {
value_map: HashMap::with_capacity(capacity),
key_map: HashMap::with_capacity(capacity),
}
}
}
impl<K1, K2, V, S> DHashMap<K1, K2, V, S>
where
S: Clone,
{
/// Creates an empty [`DHashMap`] which will use the given hash builder to hash
/// keys.
///
/// The created map has the default initial capacity, witch is equal to 0, so
/// it will not allocate until it is first inserted into.
///
/// Warning: `hash_builder` is normally randomly generated, and
/// is designed to allow [`DHashMap`] to be resistant to attacks that
/// cause many collisions and very poor performance. Setting it
/// manually using this function can expose a DoS attack vector.
///
/// The `hash_builder` passed should implement the [`BuildHasher`] trait for
/// the [`DHashMap`] to be useful, see its documentation for details.
/// It also should implement the [`Clone`] trait because we create two
/// [`HashMap`]s inside the [`DHashMap`], so that we need to
/// [`clone`](core::clone::Clone::clone) hash_builder for passing it inside
/// two inner `HashMaps`.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
/// use std::collections::hash_map::RandomState;
///
/// let s = RandomState::new();
/// let mut map = DHashMap::with_hasher(s);
///
/// // The created DHashMap holds none elements
/// assert_eq!(map.len(), 0);
///
/// // The created DHashMap also doesn't allocate memory
/// assert_eq!(map.capacity(), 0);
///
/// // Now we insert elements inside created DHashMap
/// map.insert("One", 1, 2);
/// // We can see that the DHashMap holds 1 element
/// assert_eq!(map.len(), 1);
/// // And it also allocates some capacity (by default it starts from 3 elements)
/// assert!(map.capacity() > 1);
/// ```
#[inline]
pub fn with_hasher(hash_builder: S) -> DHashMap<K1, K2, V, S> {
DHashMap {
value_map: HashMap::with_hasher(hash_builder.clone()),
key_map: HashMap::with_hasher(hash_builder),
}
}
/// Creates an empty [`DHashMap`] with the specified capacity, using `hash_builder`
/// to hash the keys.
///
/// The hash map will be able to hold at least `capacity` elements without
/// reallocating. If `capacity` is 0, the hash map will not allocate.
///
/// Warning: `hash_builder` is normally randomly generated, and
/// is designed to allow HashMaps to be resistant to attacks that
/// cause many collisions and very poor performance. Setting it
/// manually using this function can expose a DoS attack vector.
///
/// The `hash_builder` passed should implement the [`BuildHasher`] trait for
/// the [`DHashMap`] to be useful, see its documentation for details.
/// It also should implement the [`Clone`] trait because we create two
/// [`HashMap`]s inside the [`DHashMap`], so that we need to
/// [`clone`](core::clone::Clone::clone) hash_builder for passing it inside
/// two inner `HashMaps`.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
/// use std::collections::hash_map::RandomState;
///
/// let s = RandomState::new();
/// let mut map = DHashMap::with_capacity_and_hasher(5, s);
///
/// // The created DHashMap holds none elements
/// assert_eq!(map.len(), 0);
/// // But it can hold at least 5 elements without reallocating
/// let empty_map_capacity = map.capacity();
/// assert!(empty_map_capacity >= 5);
///
/// // Now we insert some 5 elements inside the created DHashMap
/// map.insert("One", 1, "a");
/// map.insert("Two", 2, "b");
/// map.insert("Three", 3, "c");
/// map.insert("Four", 4, "d");
/// map.insert("Five", 5, "e");
///
/// // We can see that the DHashMap holds 5 elements
/// assert_eq!(map.len(), 5);
/// // But its capacity isn't changed
/// assert_eq!(map.capacity(), empty_map_capacity)
/// ```
#[inline]
pub fn with_capacity_and_hasher(capacity: usize, hash_builder: S) -> DHashMap<K1, K2, V, S> {
DHashMap {
value_map: HashMap::with_capacity_and_hasher(capacity, hash_builder.clone()),
key_map: HashMap::with_capacity_and_hasher(capacity, hash_builder),
}
}
}
impl<K1, K2, V, S> DHashMap<K1, K2, V, S> {
/// Returns the number of elements the map can hold without reallocating.
///
/// This number is a lower bound; the `DHashMap<K1, K2, V>` collection might
/// be able to hold more, but is guaranteed to be able to hold at least this many.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
/// let map = DHashMap::<i32, &str, &str>::with_capacity(16);
///
/// // The created DHashMap can hold at least 16 elements
/// assert!(map.capacity() >= 16);
/// // But for now it doesn't hold any elements
/// assert_eq!(map.len(), 0);
/// ```
#[inline]
pub fn capacity(&self) -> usize {
// we only take it into account because it contains the most important part of
// hashtable - the value
self.value_map.capacity()
}
/// Returns the number of elements in the map.
///
/// # Examples
///
/// ```
/// use double_map::{DHashMap, dhashmap};
///
/// let mut a = DHashMap::new();
/// // The created DHashMap doesn't hold any elements
/// assert_eq!(a.len(), 0);
/// // We insert one element
/// a.insert(1, "Breakfast", "Pancakes");
/// // And can be sure that DHashMap holds one element
/// assert_eq!(a.len(), 1);
///
/// let map = dhashmap![
/// 1, "Breakfast" => "Pancakes",
/// 2, "Lunch" => "Sandwich",
/// ];
/// assert_eq!(map.len(), 2);
/// ```
#[inline]
pub fn len(&self) -> usize {
// we only take it into account because it contains the most important part of
// hashtable - the value
self.value_map.len()
}
/// Returns `true` if the map contains no elements.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
///
/// let mut a = DHashMap::new();
/// // The created DHashMap doesn't hold any elements, so it's empty
/// assert!(a.is_empty() && a.len() == 0);
/// // We insert one element
/// a.insert(1, "a", "One");
/// // And can be sure that DHashMap is not empty but holds one element
/// assert!(!a.is_empty() && a.len() == 1);
/// ```
#[inline]
pub fn is_empty(&self) -> bool {
// we only take it into account because it contains the most important part of
// hashtable - the value
self.value_map.is_empty()
}
/// Clears the map, removing all keys-value tuples.
/// Keeps the allocated memory for reuse.
///
/// # Examples
///
/// ```
/// use double_map::{DHashMap, dhashmap};
///
/// let mut a = dhashmap![
/// 1, "Breakfast" => "Pancakes",
/// 2, "Lunch" => "Sandwich",
/// ];
///
/// // We can that see DHashMap holds two elements
/// assert_eq!(a.len(), 2);
/// let capacity_before_clearing = a.capacity();
///
/// a.clear();
///
/// // And now the map is empty and contains no elements
/// assert!(a.is_empty() && a.len() == 0);
/// // But map capacity is equal to the old one
/// assert_eq!(a.capacity(), capacity_before_clearing);
/// ```
#[inline]
pub fn clear(&mut self) {
self.value_map.clear();
self.key_map.clear();
}
/// Returns a reference to the map's [`BuildHasher`].
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
/// use std::collections::hash_map::RandomState;
///
/// let hasher = RandomState::new();
/// let map: DHashMap<i32, i32, i32> = DHashMap::with_hasher(hasher);
/// let hasher: &RandomState = map.hasher();
/// ```
#[inline]
pub fn hasher(&self) -> &S {
self.value_map.hasher()
}
}
impl<K1, K2, V, S> DHashMap<K1, K2, V, S>
where
K1: Eq + Hash,
K2: Eq + Hash,
S: BuildHasher,
{
/// Reserves capacity for at least `additional` more elements to be inserted
/// in the `DHashMap<K1, K2, V>`. The collection may reserve more space to avoid
/// frequent reallocations.
///
/// # Panics
///
/// Panics if the new allocation size overflows `usize::Max / 2`.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
/// let mut a = DHashMap::<&str, i128, &str>::new();
/// a.insert("apple", 1, "a");
/// a.insert("banana", 2, "b");
/// a.insert("cherry", 3, "c");
///
/// // We reserve space for additional 10 elements
/// a.reserve(10);
/// // And can see that created DHashMap can hold at least 13 elements
/// assert!(a.capacity() >= 13);
/// ```
#[inline]
pub fn reserve(&mut self, additional: usize) {
self.value_map.reserve(additional);
self.key_map.reserve(additional);
}
/// Tries to reserve capacity for at least `additional` more elements to be inserted
/// in the given `DHashMap<K1, K2, V>`. The collection may reserve more space to avoid
/// frequent reallocations.
///
/// # Errors
///
/// If the capacity overflows, or the allocator reports a failure, then an error
/// is returned.
///
/// # Examples
///
/// ```
/// use std::collections::TryReserveError;
/// use double_map::DHashMap;
///
/// let mut map: DHashMap<i32, &str, isize> = DHashMap::new();
/// map.try_reserve(20).expect("something go wrong");
///
/// // So everything is Ok
/// let capacity = map.capacity();
/// assert!(capacity >= 20);
///
/// // Let's check that it returns error if it can not reserve asked capacity
/// let result = map.try_reserve(usize::MAX);
/// match result {
/// Err(_) => println!("It is ok, error was expected"),
/// Ok(_) => unreachable!(),
/// }
/// // And capacity of the map isn't changed
/// assert_eq!(map.capacity(), capacity);
/// ```
#[inline]
pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
self.value_map.try_reserve(additional)?;
self.key_map.try_reserve(additional)
}
/// Shrinks the capacity of the map as much as possible. It will drop
/// down as much as possible while maintaining the internal rules
/// and possibly leaving some space in accordance with the resize policy.
///
/// Note that in general case the capacity is not *guaranteed* to shrink,
/// but a zero-length DHashMap should generally shrink to capacity zero.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
/// let mut a = DHashMap::<i32, &str, &str>::with_capacity(16);
///
/// // This DHashMap can hold at least 16 elements
/// let capacity_before_shrink = a.capacity();
/// assert!(capacity_before_shrink >= 16);
///
/// // And after shrinking, map capacity is less than before
/// a.shrink_to_fit();
/// assert!(a.capacity() < capacity_before_shrink);
///
/// // If we reserve some memory and insert some elements
/// a.reserve(10);
/// a.insert(1, "a", "One");
/// a.insert(2, "b", "Two");
/// assert!(a.capacity() >= 10);
///
/// // After applying shrink_to_fit method, the capacity less than
/// // reserved before, but inserted elements are still inside map
/// a.shrink_to_fit();
/// assert!(a.capacity() >= 2 && a.capacity() < 10);
/// assert_eq!(a.get_key1(&1), Some(&"One"));
/// assert_eq!(a.get_key1(&2), Some(&"Two"))
/// ```
#[inline]
pub fn shrink_to_fit(&mut self) {
self.value_map.shrink_to_fit();
self.key_map.shrink_to_fit();
}
/// Shrinks the capacity of the map with a lower limit. It will drop
/// down no lower than the supplied limit while maintaining the internal rules
/// and possibly leaving some space in accordance with the resize policy.
///
/// If the current capacity is less than the lower limit, this is a no-op.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
///
/// let mut map: DHashMap<i32, i32, i32> = DHashMap::with_capacity(100);
/// map.insert(1, 2, 3);
/// map.insert(4, 5, 6);
/// map.insert(7, 8, 9);
/// assert!(map.capacity() >= 100);
///
/// // We have only 3 elements inside map, so it works
/// map.shrink_to(10);
/// assert!(map.capacity() >= 10 && map.capacity() < 100);
///
/// // If we try shrink_to the capacity, that less than elements quantity inside map
/// map.shrink_to(0);
/// // So it works partially, but the resulting capacity is not less than quantity
/// // of elements inside the map
/// assert!(map.capacity() >= 3 && map.capacity() < 10);
/// ```
#[inline]
pub fn shrink_to(&mut self, min_capacity: usize) {
self.value_map.shrink_to(min_capacity);
self.key_map.shrink_to(min_capacity);
}
/// Returns a reference to the value corresponding to the given primary key (key #1).
///
/// The key may be any borrowed form of the map's key type, but
/// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
/// the key type.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
///
/// let mut map = DHashMap::new();
/// map.insert(1, "a", "One");
/// assert_eq!(map.get_key1(&1), Some(&"One"));
/// assert_eq!(map.get_key1(&2), None);
/// ```
#[inline]
pub fn get_key1<Q: ?Sized>(&self, k1: &Q) -> Option<&V>
where
K1: Borrow<Q>,
Q: Hash + Eq,
{
let (_, value) = self.value_map.get(k1)?;
Some(value)
}
/// Returns a reference to the value corresponding to the given secondary key (key #2).
///
/// The key may be any borrowed form of the map's key type, but
/// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
/// the key type.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
///
/// let mut map = DHashMap::new();
/// map.insert(1, "a", "One");
/// assert_eq!(map.get_key2(&"a"), Some(&"One"));
/// assert_eq!(map.get_key2(&"b"), None);
/// ```
#[inline]
pub fn get_key2<Q: ?Sized>(&self, k2: &Q) -> Option<&V>
where
K2: Borrow<Q>,
Q: Hash + Eq,
{
let key = self.key_map.get(k2)?;
let (_, value) = self.value_map.get(key)?;
Some(value)
}
/// Returns a mutable reference to the value corresponding to
/// the given primary key `(key #1)`.
///
/// The key may be any borrowed form of the map's key type, but
/// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
/// the key type.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
///
/// let mut map = DHashMap::new();
/// map.insert(1, "a", "One");
/// if let Some(x) = map.get_mut_key1(&1) {
/// *x = "First";
/// }
/// assert_eq!(map.get_key1(&1), Some(&"First"));
/// ```
#[inline]
pub fn get_mut_key1<Q: ?Sized>(&mut self, k1: &Q) -> Option<&mut V>
where
K1: Borrow<Q>,
Q: Hash + Eq,
{
let (_, value) = self.value_map.get_mut(k1)?;
Some(value)
}
/// Returns a mutable reference to the value corresponding to
/// the given secondary key `(key #2)`.
///
/// The key may be any borrowed form of the map's key type, but
/// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
/// the key type.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
///
/// let mut map = DHashMap::new();
/// map.insert(1, "a", "One");
/// if let Some(x) = map.get_mut_key2(&"a") {
/// *x = "First";
/// }
/// assert_eq!(map.get_key2(&"a"), Some(&"First"));
/// ```
#[inline]
pub fn get_mut_key2<Q: ?Sized>(&mut self, k2: &Q) -> Option<&mut V>
where
K2: Borrow<Q>,
Q: Hash + Eq,
{
let key = self.key_map.get(k2)?;
let (_, value) = self.value_map.get_mut(key)?;
Some(value)
}
/// Removes element from the map using a primary key `(key #1)`,
/// returning the value corresponding to the key if the key was
/// previously in the map. Keeps the allocated memory for reuse.
///
/// The key may be any borrowed form of the map's key type, but
/// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
/// the key type.
///
/// # Note
///
/// This method removes not only value, but whole element includng
/// primary `K1` and secondary `K2` keys
///
/// # Examples
///
/// ```
/// use double_map::{DHashMap, dhashmap};
///
/// // We create map with three elements
/// let mut map = dhashmap! {
/// 1, "One" => String::from("Eins"),
/// 2, "Two" => String::from("Zwei"),
/// 3, "Three" => String::from("Drei"),
/// };
///
/// // We can see that DHashMap holds three elements
/// assert!(map.len() == 3 && map.capacity() >= 3);
///
/// // Also we reserve memory for holdind additionally at least 20 elements,
/// // so that DHashMap can hold 23 elements or more
/// map.reserve(20);
/// let capacity_before_remove = map.capacity();
///
/// // We remove element with key #1 from the map and get corresponding value
/// assert_eq!(map.remove_key1(&1), Some("Eins".to_owned()));
/// // If we try to remove the same element with key #1 twise we get None,
/// // because that element was already removed
/// assert_eq!(map.remove_key1(&1), None);
///
/// // Now we remove all elements one by one, and can see that map holds nothing
/// map.remove_key1(&2);
/// map.remove_key1(&3);
/// assert_eq!(map.len(), 0);
///
/// // But map capacity is equal to the old one and can hold at least 23 elements
/// assert!(map.capacity() == capacity_before_remove && map.capacity() >= 23);
/// ```
#[inline]
pub fn remove_key1<Q: ?Sized>(&mut self, key: &Q) -> Option<V>
where
K1: Borrow<Q>,
Q: Hash + Eq,
{
let (key, value) = self.value_map.remove(key)?;
self.key_map.remove(&key);
Some(value)
}
/// Removes element from the map using a secondary key `(key #2)`,
/// returning the value corresponding to the key if the key was
/// previously in the map. Keeps the allocated memory for reuse.
///
/// The key may be any borrowed form of the map's key type, but
/// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
/// the key type.
///
/// # Note
///
/// This method removes not only value, but whole element includng
/// primary `K1` and secondary `K2` keys
///
/// # Examples
///
/// ```
/// use double_map::{DHashMap, dhashmap};
///
/// // We create map with three elements
/// let mut map = dhashmap! {
/// 1, "One" => String::from("Eins"),
/// 2, "Two" => String::from("Zwei"),
/// 3, "Three" => String::from("Drei"),
/// };
///
/// // We can see that DHashMap holds three elements
/// assert!(map.len() == 3 && map.capacity() >= 3);
///
/// // Also we reserve memory for holdind additionally at least 20 elements,
/// // so that DHashMap can hold 23 elements or more
/// map.reserve(20);
/// let capacity_before_remove = map.capacity();
///
/// // We remove element with key #1 from the map and get corresponding value
/// assert_eq!(map.remove_key2(&"One"), Some("Eins".to_owned()));
/// // If we try to remove the same element with key #1 twise we get None,
/// // because that element was already removed
/// assert_eq!(map.remove_key2(&"One"), None);
///
/// // Now we remove all elements one by one, and can see that map holds nothing
/// map.remove_key2(&"Two");
/// map.remove_key2(&"Three");
/// assert_eq!(map.len(), 0);
///
/// // But map capacity is equal to the old one and can hold at least 23 elements
/// assert!(map.capacity() == capacity_before_remove && map.capacity() >= 23);
/// ```
#[inline]
pub fn remove_key2<Q: ?Sized>(&mut self, key: &Q) -> Option<V>
where
K2: Borrow<Q>,
Q: Hash + Eq,
{
let key = self.key_map.remove(key)?;
let (_, value) = self.value_map.remove(&key)?;
Some(value)
}
}
impl<K1, K2, V, S> DHashMap<K1, K2, V, S>
where
K1: Eq + Hash + Clone,
K2: Eq + Hash + Clone,
S: BuildHasher,
{
/// Tries to get the given keys' corresponding entry in the map for in-place
/// manipulation.
///
/// Returns [`Entry`] enum if `all` of the following is `true`:
/// - Both key #1 and key #2 are vacant.
/// - If both key #1 and key #2 exist, they refer to the same value.
///
/// When the above statements are `false`, [`entry`](DHashMap::entry) method returns
/// [`EntryError`] structure which contains the [`ErrorKind`] enum, and the values
/// of provided keys that were not used for creation entry (that can be used for
/// another purpose).
///
/// Depending on the points below, different [`ErrorKind`] variants may be returned:
/// - When key #1 is vacant, but key #2 already exists with some value, the
/// returned [`ErrorKind`] variant is [`ErrorKind::VacantK1AndOccupiedK2`].
/// - When key #1 already exists with some value, but key #2 is vacant, the
/// returned [`ErrorKind`] variant is [`ErrorKind::OccupiedK1AndVacantK2`].
/// - When both key #1 and key #2 already exist with some values, but point
/// to different entries (values) the returned [`ErrorKind`] variant is
/// [`ErrorKind::KeysPointsToDiffEntries`].
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
/// use double_map::dhash_map::ErrorKind;
///
/// let mut letters = DHashMap::new();
///
/// for ch in "a short treatise on fungi".chars() {
/// if let Ok(entry) = letters.entry(ch.clone(), ch) {
/// let counter = entry.or_insert(0);
/// *counter += 1;
/// }
/// }
///
/// assert_eq!(letters.get_key1(&'s'), Some(&2));
/// assert_eq!(letters.get_key1(&'t'), Some(&3));
/// assert_eq!(letters.get_key1(&'u'), Some(&1));
/// assert_eq!(letters.get_key1(&'y'), None);
///
/// // Return `ErrorKind::OccupiedK1AndVacantK2` if key #1 already
/// // exists with some value, but key #2 is vacant.
/// let error_kind = letters.entry('s', 'y').unwrap_err().error;
/// assert_eq!(error_kind, ErrorKind::OccupiedK1AndVacantK2);
///
/// // Return `ErrorKind::VacantK1AndOccupiedK2` if key #1 is vacant,
/// // but key #2 already exists with some value.
/// let error_kind = letters.entry('y', 's').unwrap_err().error;
/// assert_eq!(error_kind, ErrorKind::VacantK1AndOccupiedK2);
///
/// // Return `ErrorKind::KeysPointsToDiffEntries` if both
/// // key #1 and key #2 already exist with some values,
/// // but point to different entries (values).
/// let error_kind = letters.entry('s', 't').unwrap_err().error;
/// assert_eq!(error_kind, ErrorKind::KeysPointsToDiffEntries);
/// ```
#[inline]
pub fn entry(&mut self, k1: K1, k2: K2) -> Result<Entry<'_, K1, K2, V>, EntryError<K1, K2>> {
// I don't like the way this function is done. But it looks like Hashmap::entry
// (which internally uses hashbrown::rustc_entry::HashMap::rustc_entry) calls
// self.reserve(1) when no key is found (vacant). It seems this one will lead
// to constant allocation and deallocation, given that value_map.entry and
// key_map.entry may not be vacant and occupied at the same time, so I'll
// leave the implementation this way for now
match self.value_map.get(&k1) {
None => match self.key_map.get(&k2) {
None => {
// SAFETY: We already check that both key vacant
Ok(unsafe { self.map_vacant_entry(k1, k2) })
}
// Error: Vacant key #1 of type K1 and occupied key # 2 of type K2
Some(_) => Err(EntryError {
error: ErrorKind::VacantK1AndOccupiedK2,
keys: (k1, k2),
}),
},
Some((key2_exist, _)) => match self.key_map.get(&k2) {
Some(key1_exist) => {
return if k1 == *key1_exist && k2 == *key2_exist {
// SAFETY: We already check that both key exist and refer to the same value
Ok(unsafe { self.map_occupied_entry(k1, k2) })
} else {
// Error: key #1 and key # 2 refer to different entries / values
Err(EntryError {
error: ErrorKind::KeysPointsToDiffEntries,
keys: (k1, k2),
})
};
}
None => Err(EntryError {
error: ErrorKind::OccupiedK1AndVacantK2,
keys: (k1, k2),
}),
},
}
}
// This function used only inside this crate. Return Entry::Occupied
// because we know exactly that both entry are occupied
#[inline(always)]
unsafe fn map_occupied_entry(&mut self, k1: K1, k2: K2) -> Entry<'_, K1, K2, V> {
let raw_v = self.value_map.entry(k1);
let raw_k = self.key_map.entry(k2);
match raw_v {
hash_map::Entry::Occupied(base_v) => match raw_k {
hash_map::Entry::Occupied(base_k) => {
Entry::Occupied(OccupiedEntry { base_v, base_k })
}
_ => unreachable_unchecked(),
},
_ => unreachable_unchecked(),
}
}
// This function used only inside this crate. Return Entry::Vacant
// because we know exactly that both entry are vacant
#[inline(always)]
unsafe fn map_vacant_entry(&mut self, k1: K1, k2: K2) -> Entry<'_, K1, K2, V> {
let raw_v = self.value_map.entry(k1);
let raw_k = self.key_map.entry(k2);
match raw_v {
hash_map::Entry::Vacant(base_v) => match raw_k {
hash_map::Entry::Vacant(base_k) => Entry::Vacant(VacantEntry { base_v, base_k }),
_ => unreachable_unchecked(),
},
_ => unreachable_unchecked(),
}
}
/// Inserts given keys and value into the map **`without checking`**. Update the value
/// if key #1 of type `K1` already presents with returning old value.
///
/// If the map did not have these keys present, [`None`] is returned.
///
/// # Warning
///
/// **Using this method can lead to unsynchronization between key #1 and key #1,
/// so that they can refer to different values.** It also can lead to different
/// quantity of keys, so that quantity of keys #2 `K2` can be ***less*** than
/// quantity of keys #1 `K1`.
///
/// If the map did have these keys vacant or **present** and **both keys refer to
/// the same value** it is ***Ok***, the value is updated, and the old value is
/// returned inside `Some(V)` variant.
///
/// **But** for this method, it doesn't matter if key # 2 exists or not,
/// it returns updated value also if the map contains only key #1.
/// It is ***because*** this method **doesn't check** that:
/// - key #1 is vacant, but key #2 already exists with some value;
/// - key #1 already exists with some value, but key #2 is vacant;
/// - both key #1 and key #2 already exist with some values, but
/// point to different entries (values).
///
/// The keys are not updated, though; this matters for types that can
/// be `==` without being identical. See the [std module-level documentation]
/// for more.
///
/// # Note
///
/// Using this method is cheaper than using another insertion
/// [`entry`](DHashMap::entry), [`insert`](DHashMap::insert) and
/// [`try_insert`](DHashMap::try_insert) methods.
///
/// Links between keys #1 `K1` and the values that they refer are adequate.
/// **Unsynchronization** between key #1 and key #2, lead only to that the key # 2
/// may refer to unexpected value.
///
/// It is recommended to use this method only if you are sure that
/// key #1 and key #2 are unique. For example if key #1 of type `K1` is generated
/// automatically and you check only that there is no key #2 of type `K2`.
///
/// [std module-level documentation]: std::collections#insert-and-complex-keys
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
/// use core::hash::Hash;
///
/// let mut map = DHashMap::new();
///
/// // Returns None if keys are vacant
/// assert_eq!(map.insert_unchecked(1, "a", "One"), None);
/// assert_eq!(map.is_empty(), false);
///
/// // If the map did have these keys present, the value is updated,
/// // and the old value is returned inside `Some(V)` variants
/// map.insert_unchecked(2, "b", "Two");
/// assert_eq!(map.insert_unchecked(2, "b", "Second"), Some("Two"));
/// assert_eq!(map.get_key1(&2), Some(&"Second"));
///
/// // But method does not care about key #2
/// assert_eq!(map.insert_unchecked(1, "b", "First"), Some("One"));
/// // So key # 2 refers to unexpected value, and now we have double second keys
/// // referring to the same value
/// assert_eq!(map.get_key2(&"a"), Some(&"First"));
/// assert_eq!(map.get_key2(&"b"), Some(&"First"));
///
/// // But it can be safe if you generate one key automatically, and check
/// // existence only other key. It can be for example like that:
/// #[derive(Copy, Clone, PartialEq, Eq, Hash)]
/// pub struct PupilID(usize);
///
/// pub struct Pupil {
/// name: String
/// }
///
/// pub struct Class {
/// pupils: DHashMap<PupilID, String, Pupil>,
/// len: usize,
/// }
///
/// impl Class {
/// pub fn new() -> Class {
/// Self{
/// pupils: DHashMap::new(),
/// len: 0
/// }
/// }
/// pub fn contains_name(&self, name: &String) -> bool {
/// self.pupils.get_key2(name).is_some()
/// }
/// pub fn add_pupil(&mut self, name: String) -> Option<PupilID> {
/// if !self.contains_name(&name) {
/// let len = &mut self.len;
/// let id = PupilID(*len);
/// self.pupils.insert_unchecked( id, name.clone(), Pupil { name } );
/// *len += 1;
/// Some(id)
/// } else {
/// None
/// }
/// }
/// }
/// ```
#[inline]
pub fn insert_unchecked(&mut self, k1: K1, k2: K2, v: V) -> Option<V> {
self.key_map.insert(k2.clone(), k1.clone());
let (_, v) = self.value_map.insert(k1, (k2, v))?;
Some(v)
}
/// Tries to insert given keys and value into the map. Update the value
/// if keys are already present and refer to the same value with returning
/// old value.
///
/// If the map did not have these keys present, [`None`] is returned.
///
/// If the map did have these key **present**, and **both keys refer to
/// the same value**, the value is updated, and the old value is returned
/// inside `Some(Ok(V))` variants. The key is not updated, though; this
/// matters for types that can be `==` without being identical.
/// See the [std module-level documentation] for more.
///
/// The [`insert`](DHashMap::insert) method returns [`InsertError`] structure
/// (inside of `Some(Err(_))` variants):
/// - when key #1 is vacant, but key #2 already exists with some value;
/// - when key #1 already exists with some value, but key #2 is vacant;
/// - when both key #1 and key #2 already exist with some values, but
/// point to different entries (values).
///
/// The above mentioned error kinds can be matched through the [`ErrorKind`] enum.
/// Returned [`InsertError`] structure also contains provided keys and value
/// that were not inserted and can be used for another purpose.
///
/// [std module-level documentation]: std::collections#insert-and-complex-keys
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
/// use double_map::dhash_map::{InsertError, ErrorKind};
/// let mut map = DHashMap::new();
///
/// // Returns None if keys are vacant
/// assert_eq!(map.insert(1, "a", "One"), None);
/// assert_eq!(map.is_empty(), false);
///
/// // If the map did have these keys present, and both keys refer to
/// // the same value, the value is updated, and the old value is returned
/// // inside `Some(Ok(V))` variants
/// map.insert(2, "b", "Two");
/// assert_eq!(map.insert(2, "b", "Second"), Some(Ok("Two")));
/// assert_eq!(map.get_key1(&2), Some(&"Second"));
///
/// // Returns `ErrorKind::OccupiedK1AndVacantK2` if key #1 already
/// // exists with some value, but key #2 is vacant. Error structure
/// // also contains provided keys and value
/// match map.insert(1, "c", "value") {
/// Some(Err(InsertError{ error, keys, value })) => {
/// assert_eq!(error, ErrorKind::OccupiedK1AndVacantK2);
/// assert_eq!(keys, (1, "c"));
/// assert_eq!(value, "value");
/// }
/// _ => unreachable!(),
/// }
///
/// // Returns `ErrorKind::VacantK1AndOccupiedK2` if key #1 is vacant,
/// // but key #2 already exists with some value.
/// let error_kind = map.insert(3, "a", "value").unwrap().unwrap_err().error;
/// assert_eq!(error_kind, ErrorKind::VacantK1AndOccupiedK2);
///
/// // Returns `ErrorKind::KeysPointsToDiffEntries` if both
/// // key #1 and key #2 already exist with some values,
/// // but point to different entries (values).
/// let error_kind = map.insert(1, "b", "value").unwrap().unwrap_err().error;
/// assert_eq!(error_kind, ErrorKind::KeysPointsToDiffEntries);
/// ```
#[inline]
pub fn insert(&mut self, k1: K1, k2: K2, v: V) -> Option<Result<V, InsertError<K1, K2, V>>> {
match self.entry(k1, k2) {
Ok(entry) => match entry {
Entry::Occupied(mut entry) => {
let v = entry.insert(v);
Some(Ok(v))
}
Entry::Vacant(entry) => {
entry.insert(v);
None
}
},
Err(EntryError { error, keys }) => Some(Err(InsertError {
error,
keys,
value: v,
})),
}
}
/// Tries to insert given keys and value into the map, and returns
/// a mutable reference to the value in the entry if the map did not
/// have these keys present.
///
/// If the map did have these keys **present**, and **both keys refer to
/// the same value**, ***nothing*** is updated, and a [`TryInsertError::Occupied`]
/// enum variant error containing [`OccupiedError`] structure is returned.
/// The [`OccupiedError`] contains the occupied entry [`OccupiedEntry`],
/// and the value that was not inserted.
///
/// The [`try_insert`](DHashMap::try_insert) method return [`InsertError`] structure
/// (inside of [`TryInsertError::Insert`] variant):
/// - when key #1 is vacant, but key #2 already exists with some value;
/// - when key #1 already exists with some value, but key #2 is vacant;
/// - when both key #1 and key #2 already exist with some values, but
/// point to different entries (values).
///
/// The above mentioned error kinds can be matched through the [`ErrorKind`] enum.
/// Returned [`InsertError`] structure also contains provided keys and value
/// that were not inserted and can be used for another purpose.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
/// use double_map::dhash_map::{TryInsertError, OccupiedError, InsertError, ErrorKind};
///
///
/// let mut map = DHashMap::new();
///
/// // Returns mutable reference to the value if keys are vacant
/// let value = map.try_insert(1, "a", "One").unwrap();
/// assert_eq!(value, &"One");
/// *value = "First";
/// assert_eq!(map.get_key1(&1), Some(&"First"));
///
/// // If the map did have these keys present, and both keys refer to
/// // the same value, nothing is updated, and the provided value
/// // is returned inside `Err(TryInsertError::Occupied(_))` variants
/// map.try_insert(2, "b", "Two");
/// match map.try_insert(2, "b", "Second") {
/// Err(error) => match error {
/// TryInsertError::Occupied(OccupiedError{ entry, value }) => {
/// assert_eq!(entry.keys(), (&2, &"b"));
/// assert_eq!(entry.get(), &"Two");
/// assert_eq!(value, "Second");
/// }
/// _ => unreachable!(),
/// }
/// _ => unreachable!(),
/// }
/// assert_eq!(map.get_key1(&2), Some(&"Two"));
///
/// // Returns `ErrorKind::OccupiedK1AndVacantK2` if key #1 already
/// // exists with some value, but key #2 is vacant. Error structure
/// // also contains provided keys and value
/// match map.try_insert(1, "c", "value") {
/// Err(error) => match error {
/// TryInsertError::Insert(InsertError{ error, keys, value }) => {
/// assert_eq!(error, ErrorKind::OccupiedK1AndVacantK2);
/// assert_eq!(keys, (1, "c"));
/// assert_eq!(value, "value");
/// }
/// _ => unreachable!()
/// }
/// _ => unreachable!(),
/// }
///
/// // Returns `ErrorKind::VacantK1AndOccupiedK2` if key #1 is vacant,
/// // but key #2 already exists with some value.
/// match map.try_insert(3, "a", "value") {
/// Err(error) => match error {
/// TryInsertError::Insert(InsertError{ error, .. }) => {
/// assert_eq!(error, ErrorKind::VacantK1AndOccupiedK2);
/// }
/// _ => unreachable!()
/// }
/// _ => unreachable!(),
/// }
///
/// // Returns `ErrorKind::KeysPointsToDiffEntries` if both
/// // key #1 and key #2 already exist with some values,
/// // but point to different entries (values).
/// match map.try_insert(1, "b", "value") {
/// Err(error) => match error {
/// TryInsertError::Insert(InsertError{ error, .. }) => {
/// assert_eq!(error, ErrorKind::KeysPointsToDiffEntries);
/// }
/// _ => unreachable!()
/// }
/// _ => unreachable!(),
/// }
/// ```
#[inline]
pub fn try_insert(
&mut self,
k1: K1,
k2: K2,
v: V,
) -> Result<&mut V, TryInsertError<K1, K2, V>> {
match self.entry(k1, k2) {
Ok(entry) => match entry {
Entry::Occupied(entry) => {
Err(TryInsertError::Occupied(OccupiedError { entry, value: v }))
}
Entry::Vacant(entry) => Ok(entry.insert(v)),
},
Err(EntryError { error, keys }) => Err(TryInsertError::Insert(InsertError {
error,
keys,
value: v,
})),
}
}
}
/// Create a `DHashMap<K1, K2, V, `[`RandomState`](std::collections::hash_map::RandomState)`>`
/// from a list of sequentially given keys and values.
///
/// Input data list must follow one of these rules:
/// - `K1, K2 => V, K1, K2 => V` ... and so on;
/// - `(K1, K2) => V, (K1, K2) => V` ... and so on.
///
/// Last comma separator can be omitted.
/// If this macros is called without arguments, i.e. like
/// ```
/// # use double_map::{DHashMap, dhashmap};
/// let map: DHashMap<i32, String, String> = dhashmap![];
/// ```
/// it is equivalent to [`DHashMap::new()`] function
///
/// # Examples
///
/// ```
/// use double_map::{DHashMap, dhashmap};
///
/// // Calling macros without arguments is equivalent to DHashMap::new() function
/// let _map0: DHashMap<i32, i32, i32> = dhashmap![];
///
/// let map = dhashmap!{
/// 1, "a" => "One",
/// 2, "b" => "Two", // last comma separator can be omitted
/// };
///
/// assert_eq!(map.get_key1(&1), Some(&"One"));
/// assert_eq!(map.get_key1(&2), Some(&"Two"));
/// assert_eq!(map.get_key2(&"a"), Some(&"One"));
/// assert_eq!(map.get_key2(&"b"), Some(&"Two"));
///
/// let map2 = dhashmap!{
/// (3, "c") => "Three",
/// (4, "d") => "Four" // last comma separator can be omitted
/// };
///
/// assert_eq!(map2.get_key1(&3), Some(&"Three"));
/// assert_eq!(map2.get_key1(&4), Some(&"Four"));
/// assert_eq!(map2.get_key2(&"c"), Some(&"Three"));
/// assert_eq!(map2.get_key2(&"d"), Some(&"Four"));
/// ```
#[macro_export]
macro_rules! dhashmap {
() => (DHashMap::new());
($($key1:expr, $key2:expr => $value:expr),+ $(,)?) => (
DHashMap::<_, _, _, std::collections::hash_map::RandomState>::from_iter([$(($key1, $key2, $value)),+])
);
($(($key1:expr, $key2:expr) => $value:expr),+ $(,)?) => (
DHashMap::<_, _, _, std::collections::hash_map::RandomState>::from_iter([$(($key1, $key2, $value)),+])
);
}
/// Creates an empty `DHashMap<K1, K2, V, S>`, with the `Default` value for the hasher.
impl<K1, K2, V, S> Default for DHashMap<K1, K2, V, S>
where
S: Default + Clone,
{
/// Creates an empty `DHashMap<K1, K2, V, S>`, with the `Default` value for the hasher.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
/// use std::collections::hash_map::RandomState;
///
/// // You need to specify all types of DHashMap, including hasher.
/// // Created map is empty and don't allocate memory
/// let map: DHashMap<u32, String, String, RandomState> = Default::default();
/// assert_eq!(map.capacity(), 0);
/// let map: DHashMap<u32, String, String, RandomState> = DHashMap::default();
/// assert_eq!(map.capacity(), 0);
/// ```
#[inline]
fn default() -> DHashMap<K1, K2, V, S> {
DHashMap::with_hasher(Default::default())
}
}
/// Creates an new `DHashMap<K1, K2, V, S>`, with the `Default` value
/// for the hasher from from an iterator.
impl<K1, K2, V, S> FromIterator<(K1, K2, V)> for DHashMap<K1, K2, V, S>
where
K1: Eq + Hash + Clone,
K2: Eq + Hash + Clone,
S: BuildHasher + Default + Clone,
{
/// Creates an new `DHashMap<K1, K2, V, S>`, with the `Default` value
/// for the hasher from from an iterator.
///
/// You need to specify the type of `hasher`
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
/// use std::collections::hash_map::RandomState;
///
/// let mut number = 0;
/// let some_iter = std::iter::repeat_with(move || {
/// number +=1;
/// (number, number, number * 10)
/// }).take(5);
/// // You need to specify hasher
/// let map: DHashMap<_, _, _, RandomState> = DHashMap::from_iter(some_iter.clone());
/// assert_eq!(map.get_key1(&1), Some(&10));
/// assert_eq!(map.get_key1(&5), Some(&50));
/// assert_eq!(map.get_key1(&6), None);
///
/// let some_vec: Vec<_> = some_iter.collect();
/// let map: DHashMap<_, _, _, RandomState> = DHashMap::from_iter(some_vec);
/// assert_eq!(map.get_key1(&1), Some(&10));
/// assert_eq!(map.get_key1(&5), Some(&50));
/// assert_eq!(map.get_key1(&6), None);
///
/// let some_arr = [(1, 1, 10), (2, 2, 20), (3, 3, 30), (4, 4, 40), (5, 5, 50)];
/// let map: DHashMap<_, _, _, RandomState> = DHashMap::from_iter(some_arr);
/// assert_eq!(map.get_key1(&1), Some(&10));
/// assert_eq!(map.get_key1(&5), Some(&50));
/// assert_eq!(map.get_key1(&6), None);
fn from_iter<T: IntoIterator<Item = (K1, K2, V)>>(iter: T) -> DHashMap<K1, K2, V, S> {
let mut map = DHashMap::with_hasher(Default::default());
map.extend(iter);
map
}
}
/// Inserts all new keys and values from the iterator to existing `DHashMap<K1, K2, V, S>`.
impl<K1, K2, V, S> Extend<(K1, K2, V)> for DHashMap<K1, K2, V, S>
where
K1: Eq + Hash + Clone,
K2: Eq + Hash + Clone,
S: BuildHasher,
{
/// Inserts all new keys and values from the iterator to existing `DHashMap<K1, K2, V, S>`.
///
/// Replace values with existing keys with new values returned from the iterator.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
///
/// // Let's create `DHashMap` with std::collections::hash_map::RandomState hasher
/// let mut map = DHashMap::new();
/// map.insert(1, 1, 999);
///
/// let mut number = 0;
/// let some_iter = std::iter::repeat_with(move || {
/// number +=1;
/// (number, number, number * 10)
/// }).take(5);
///
/// // You don't need to specify the hasher
/// map.extend(some_iter);
/// // Replace values with existing keys with new values returned from the iterator.
/// // So that the map.get_key1(&1) doesn't return Some(&999).
/// assert_eq!(map.get_key1(&1), Some(&10));
///
/// let some_vec: Vec<_> = std::iter::repeat_with(move || {
/// number +=100;
/// (number, number, number * 10)
/// }).take(5).collect();
/// map.extend(some_vec);
///
/// let some_arr = [(11, 11, 111), (22, 22, 222), (33, 33, 333), (44, 44, 4444), (55, 55, 555)];
/// map.extend(some_arr);
///
/// // Keys and values from some_iter
/// assert_eq!(map.get_key1(&1), Some(&10));
/// assert_eq!(map.get_key1(&5), Some(&50));
/// assert_eq!(map.get_key1(&6), None);
///
/// // Keys and values from some_vec
/// assert_eq!(map.get_key1(&100), Some(&1000));
/// assert_eq!(map.get_key1(&500), Some(&5000));
/// assert_eq!(map.get_key1(&600), None);
///
/// // Keys and values from some_arr
/// assert_eq!(map.get_key1(&11), Some(&111));
/// assert_eq!(map.get_key1(&55), Some(&555));
/// assert_eq!(map.get_key1(&66), None);
#[inline]
fn extend<T: IntoIterator<Item = (K1, K2, V)>>(&mut self, iter: T) {
// Keys may be already present or show multiple times in the iterator.
// Reserve the entire hint lower bound if the map is empty.
// Otherwise reserve half the hint (rounded up), so the map
// will only resize twice in the worst case.
let iter = iter.into_iter();
let reserve = if self.is_empty() {
iter.size_hint().0
} else {
(iter.size_hint().0 + 1) / 2
};
self.reserve(reserve);
iter.for_each(move |(k1, k2, v)| {
self.insert(k1, k2, v);
});
}
}
/// Inserts all new keys and values from the iterator to existing `DHashMap<K1, K2, V, S>`.
impl<'a, K1, K2, V, S> Extend<(&'a K1, &'a K2, &'a V)> for DHashMap<K1, K2, V, S>
where
K1: Eq + Hash + Copy,
K2: Eq + Hash + Copy,
V: Copy,
S: BuildHasher,
{
/// Inserts all new keys and values from the iterator to existing `DHashMap<K1, K2, V, S>`.
///
/// Replace values with existing keys with new values returned from the iterator.
/// The keys and values must implement [`Copy`] trait.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
///
/// // Let's create `DHashMap` with std::collections::hash_map::RandomState hasher
/// let mut map = DHashMap::new();
/// map.insert(1, 1, 999);
///
/// let mut number = 0;
/// let some_vec: Vec<_> = std::iter::repeat_with(move || {
/// number +=1;
/// (number, number, number * 10)
/// }).take(5).collect();
///
/// // You don't need to specify the hasher
/// let some_iter = some_vec.iter().map(|(k1, k2, v)| (k1, k2, v));
/// map.extend(some_iter);
///
/// // Replace values with existing keys with new values returned from the iterator.
/// // So that the map.get_key1(&1) doesn't return Some(&999).
/// assert_eq!(map.get_key1(&1), Some(&10));
/// assert_eq!(map.get_key1(&5), Some(&50));
/// assert_eq!(map.get_key1(&6), None);
///
/// // And created vector are still can be used.
/// assert_eq!(some_vec[4], (5, 5, 50));
#[inline]
fn extend<T: IntoIterator<Item = (&'a K1, &'a K2, &'a V)>>(&mut self, iter: T) {
self.extend(iter.into_iter().map(|(&k1, &k2, &v)| (k1, k2, v)))
}
}
/// A view into an occupied entry in a [`DHashMap`].
/// It is part of the [`Entry`] enum and [`OccupiedError`] struct.
#[derive(Debug)]
pub struct OccupiedEntry<'a, K1: 'a, K2: 'a, V: 'a> {
base_v: hash_map::OccupiedEntry<'a, K1, (K2, V)>,
base_k: hash_map::OccupiedEntry<'a, K2, K1>,
}
impl<'a, K1, K2, V> OccupiedEntry<'a, K1, K2, V> {
/// Gets a reference to the key #1 of type `K1` in the entry.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
/// use double_map::dhash_map::Entry;
///
/// let mut map: DHashMap<&str, u32, i32> = DHashMap::new();
/// map.insert("poneyland", 0, 12);
///
/// if let Ok(entry) = map.entry("poneyland", 0) {
/// match entry {
/// Entry::Occupied(oc_entry) => {
/// assert_eq!(oc_entry.key1(), &"poneyland");
/// }
/// Entry::Vacant(_) => panic!("Something go wrong!!!")
/// }
/// }
/// ```
#[inline]
pub fn key1(&self) -> &K1 {
self.base_v.key()
}
/// Gets a reference to the key #2 of type `K2` in the entry.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
/// use double_map::dhash_map::Entry;
///
/// let mut map: DHashMap<&str, u32, i32> = DHashMap::new();
/// map.insert("poneyland", 0, 12);
///
/// if let Ok(entry) = map.entry("poneyland", 0) {
/// match entry {
/// Entry::Occupied(oc_entry) => {
/// assert_eq!(oc_entry.key2(), &0);
/// }
/// Entry::Vacant(_) => panic!("Something go wrong!!!")
/// }
/// }
/// ```
#[inline]
pub fn key2(&self) -> &K2 {
self.base_k.key()
}
/// Gets a reference to the keys of type `K1` and `K2` in the entry.
/// Return tuple of type `(&'a K1, &'a K2)`.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
/// use double_map::dhash_map::Entry;
///
/// let mut map: DHashMap<&str, u32, i32> = DHashMap::new();
/// map.insert("poneyland", 0, 12);
///
/// if let Ok(entry) = map.entry("poneyland", 0) {
/// match entry {
/// Entry::Occupied(oc_entry) => {
/// assert_eq!(oc_entry.keys(), (&"poneyland", &0));
/// }
/// Entry::Vacant(_) => panic!("Something go wrong!!!")
/// }
/// }
/// ```
#[inline]
pub fn keys(&self) -> (&K1, &K2) {
(self.base_v.key(), self.base_k.key())
}
/// Take the ownership of the keys and value from the map.
/// Keeps the allocated memory for reuse.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
/// use double_map::dhash_map::Entry;
///
/// // So lets create some map and insert some element
/// let mut map: DHashMap<&str, u32, i32> = DHashMap::new();
/// map.insert("poneyland", 0, 10);
/// map.insert("bearland", 1, 11);
///
/// // And also reserve some space for additional elements
/// map.reserve(15);
/// // Now our map can hold at least 17 elements
/// let capacity_before_entries_remove = map.capacity();
/// assert!(capacity_before_entries_remove >= 17);
///
/// assert!(map.get_key1("poneyland") == Some(&10) && map.get_key2(&0) == Some(&10));
/// if let Ok(entry) = map.entry("poneyland", 0) {
/// match entry {
/// Entry::Occupied(oc_entry) => {
/// // We delete the entry from the map.
/// let tuple = oc_entry.remove_entry();
/// assert_eq!(tuple, ("poneyland", 0, 10));
/// }
/// Entry::Vacant(_) => panic!("Something go wrong!!!")
/// }
/// }
/// assert!(map.get_key1("poneyland") == None && map.get_key2(&0) == None);
///
/// assert!(map.get_key1("bearland") == Some(&11) && map.get_key2(&1) == Some(&11));
/// if let Ok(entry) = map.entry("bearland", 1) {
/// match entry {
/// Entry::Occupied(oc_entry) => {
/// // We delete the entry from the map.
/// let tuple = oc_entry.remove_entry();
/// assert_eq!(tuple, ("bearland", 1, 11));
/// }
/// Entry::Vacant(_) => panic!("Something go wrong!!!")
/// }
/// }
/// assert!(map.get_key1("bearland") == None && map.get_key2(&1) == None);
///
/// // But the capacity of our map isn't changed and still equals to the capacity before
/// // using `remove_entry` method
/// assert_eq!(map.capacity(), capacity_before_entries_remove);
/// ```
#[inline]
pub fn remove_entry(self) -> (K1, K2, V) {
self.base_k.remove_entry();
let (k1, (k2, v)) = self.base_v.remove_entry();
(k1, k2, v)
}
/// Gets a reference to the value in the entry.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
/// use double_map::dhash_map::Entry;
///
/// let mut map: DHashMap<&str, u32, i32> = DHashMap::new();
/// map.insert("poneyland", 0, 12);
///
/// if let Ok(entry) = map.entry("poneyland", 0) {
/// match entry {
/// Entry::Occupied(oc_entry) => {
/// assert_eq!(oc_entry.get(), &12);
/// }
/// Entry::Vacant(_) => panic!("Something go wrong!!!")
/// }
/// }
/// ```
#[inline]
pub fn get(&self) -> &V {
let (_, v) = self.base_v.get();
v
}
/// Gets a mutable reference to the value in the entry.
///
/// If you need a reference to the `OccupiedEntry` which may outlive the
/// destruction of the `Entry` value, see [`into_mut`](`OccupiedEntry::into_mut`).
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
/// use double_map::dhash_map::Entry;
///
/// let mut map: DHashMap<&str, u32, i32> = DHashMap::new();
/// map.insert("poneyland", 0, 12);
/// assert_eq!(map.get_key1("poneyland"), Some(&12));
/// assert_eq!(map.get_key2(&0), Some(&12));
///
/// if let Ok(entry) = map.entry("poneyland", 0) {
/// match entry {
/// Entry::Occupied(mut oc_entry) => {
/// *oc_entry.get_mut() += 10;
/// assert_eq!(oc_entry.get(), &22);
///
/// // We can use the same Entry multiple times.
/// *oc_entry.get_mut() += 2;
/// }
/// Entry::Vacant(_) => panic!("Something go wrong!!!")
/// }
/// }
/// assert_eq!(map.get_key1("poneyland"), Some(&24));
/// assert_eq!(map.get_key2(&0), Some(&24));
/// ```
#[inline]
pub fn get_mut(&mut self) -> &mut V {
let (_, v) = self.base_v.get_mut();
v
}
/// Converts the `OccupiedEntry` into a mutable reference to the value in the entry
/// with a lifetime bound to the map itself.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
/// use double_map::dhash_map::Entry;
///
/// let mut map: DHashMap<&str, u32, i32> = DHashMap::new();
/// map.insert("poneyland", 0, 12);
/// assert_eq!(map.get_key1("poneyland"), Some(&12));
/// assert_eq!(map.get_key2(&0), Some(&12));
///
/// // Let's create a variable that outlives the OccupiedEntry (with some initial value)
/// let mut value: &mut i32 = &mut 0;
///
/// if let Ok(entry) = map.entry("poneyland", 0) {
/// match entry {
/// Entry::Occupied(oc_entry) => {
/// // So we can convert the OccupiedEntry into a mutable reference to the value.
/// value = oc_entry.into_mut();
/// *value += 10;
/// }
/// Entry::Vacant(_) => panic!("Something go wrong!!!")
/// }
/// }
/// // We can use the same reference outside the created oc_entry (OccupiedEntry) scope.
/// *value += 20;
/// assert_eq!(map.get_key1("poneyland"), Some(&42)); // 12 + 10 + 20
/// assert_eq!(map.get_key2(&0), Some(&42));
/// ```
#[inline]
pub fn into_mut(self) -> &'a mut V {
let (_, v) = self.base_v.into_mut();
v
}
/// Sets the value of the entry, and returns the entry's old value.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
/// use double_map::dhash_map::Entry;
///
/// let mut map: DHashMap<&str, u32, i32> = DHashMap::new();
/// map.insert("poneyland", 0, 12);
/// assert_eq!(map.get_key1("poneyland"), Some(&12));
/// assert_eq!(map.get_key2(&0), Some(&12));
///
/// // Let's create a variable that holds value
/// let mut owner: i32 = 100;
///
/// if let Ok(entry) = map.entry("poneyland", 0) {
/// match entry {
/// Entry::Occupied(mut oc_entry) => {
/// // So we can swap our created owner value with value inside the map.
/// owner = oc_entry.insert(owner);
/// }
/// Entry::Vacant(_) => panic!("Something go wrong!!!")
/// }
/// }
/// assert_eq!(owner, 12);
/// assert_eq!(map.get_key1("poneyland"), Some(&100));
/// assert_eq!(map.get_key2(&0), Some(&100));
/// ```
#[inline]
pub fn insert(&mut self, mut value: V) -> V {
let old_value = self.get_mut();
mem::swap(&mut value, old_value);
value
}
/// Take the value out of the entry (map), and return it.
/// Keeps the allocated memory for reuse.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
/// use double_map::dhash_map::Entry;
///
/// // So lets create some map and insert some element
/// let mut map: DHashMap<&str, u32, i32> = DHashMap::new();
/// map.insert("poneyland", 0, 10);
/// map.insert("bearland", 1, 11);
///
/// // And also reserve some space for additional elements
/// map.reserve(15);
/// // Now our map can hold at least 17 elements
/// let capacity_before_remove = map.capacity();
/// assert!(capacity_before_remove >= 17);
///
/// assert!(map.get_key1("poneyland") == Some(&10) && map.get_key2(&0) == Some(&10));
/// if let Ok(entry) = map.entry("poneyland", 0) {
/// match entry {
/// Entry::Occupied(oc_entry) => {
/// // We delete the entry from the map.
/// let value = oc_entry.remove();
/// assert_eq!(value, 10);
/// }
/// Entry::Vacant(_) => panic!("Something go wrong!!!")
/// }
/// }
/// assert!(map.get_key1("poneyland") == None && map.get_key2(&0) == None);
///
/// assert!(map.get_key1("bearland") == Some(&11) && map.get_key2(&1) == Some(&11));
/// if let Ok(entry) = map.entry("bearland", 1) {
/// match entry {
/// Entry::Occupied(oc_entry) => {
/// // We delete the entry from the map.
/// let value = oc_entry.remove();
/// assert_eq!(value, 11);
/// }
/// Entry::Vacant(_) => panic!("Something go wrong!!!")
/// }
/// }
/// assert!(map.get_key1("bearland") == None && map.get_key2(&1) == None);
///
/// // But the capacity of our map isn't changed and still equals to the capacity before
/// // using `remove_entry` method
/// assert_eq!(map.capacity(), capacity_before_remove);
/// ```
#[inline]
pub fn remove(self) -> V {
self.remove_entry().2
}
}
/// A view into a vacant entry in a [`DHashMap`].
/// It is part of the [`Entry`] enum.
#[derive(Debug)]
pub struct VacantEntry<'a, K1: 'a, K2: 'a, V: 'a> {
base_v: hash_map::VacantEntry<'a, K1, (K2, V)>,
base_k: hash_map::VacantEntry<'a, K2, K1>,
}
impl<'a, K1: 'a, K2: 'a, V: 'a> VacantEntry<'a, K1, K2, V>
where
K1: Clone,
K2: Clone,
{
/// Gets a reference to the key #1 of type `K1` that would be used
/// when inserting a value through the `VacantEntry`.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
/// use double_map::dhash_map::Entry;
///
/// let mut map: DHashMap<&str, u32, i32> = DHashMap::new();
///
/// if let Ok(entry) = map.entry("poneyland", 0) {
/// match entry {
/// Entry::Occupied(_) => panic!("Something go wrong!!!"),
/// Entry::Vacant(vac_entry) => assert_eq!(vac_entry.key1(), &"poneyland"),
/// }
/// }
/// ```
#[inline]
pub fn key1(&self) -> &K1 {
self.base_v.key()
}
/// Gets a reference to the key #2 of type `K2` that would be used
/// when inserting a value through the `VacantEntry`.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
/// use double_map::dhash_map::Entry;
///
/// let mut map: DHashMap<&str, u32, i32> = DHashMap::new();
///
/// if let Ok(entry) = map.entry("poneyland", 0) {
/// match entry {
/// Entry::Occupied(_) => panic!("Something go wrong!!!"),
/// Entry::Vacant(vac_entry) => assert_eq!(vac_entry.key2(), &0),
/// }
/// }
/// ```
#[inline]
pub fn key2(&self) -> &K2 {
self.base_k.key()
}
/// Gets a reference to the keys of type `K1` and `K2` that would be used
/// when inserting a value through the `VacantEntry`.
/// Return tuple of type `(&'a K1, &'a K2)`.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
/// use double_map::dhash_map::Entry;
///
/// let mut map: DHashMap<&str, u32, i32> = DHashMap::new();
///
/// if let Ok(entry) = map.entry("poneyland", 0) {
/// match entry {
/// Entry::Occupied(_) => panic!("Something go wrong!!!"),
/// Entry::Vacant(vac_entry) => {
/// assert_eq!(vac_entry.keys(), (&"poneyland", &0))
/// }
/// }
/// }
/// ```
#[inline]
pub fn keys(&self) -> (&K1, &K2) {
(self.base_v.key(), self.base_k.key())
}
/// Take the ownership of the keys from the entry.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
/// use double_map::dhash_map::Entry;
///
/// // So lets create some map and also reserve some space for additional elements
/// let mut map: DHashMap<&str, u32, i32> = DHashMap::with_capacity(3);
///
/// let capacity_before_into_keys = map.capacity();
/// assert!(capacity_before_into_keys >= 3);
///
/// if let Ok(entry) = map.entry("poneyland", 0) {
/// match entry {
/// Entry::Occupied(_) => panic!("Something go wrong!!!"),
/// Entry::Vacant(vac_entry) => {
/// // We take the keys from the entry.
/// let tuple = vac_entry.into_keys();
/// assert_eq!(tuple, ("poneyland", 0));
/// }
/// }
/// }
///
/// if let Ok(entry) = map.entry("bearland", 1) {
/// match entry {
/// Entry::Occupied(_) => panic!("Something go wrong!!!"),
/// Entry::Vacant(vac_entry) => {
/// // We take the keys from the entry.
/// let tuple = vac_entry.into_keys();
/// assert_eq!(tuple, ("bearland", 1));
/// }
/// }
/// }
///
/// map.entry("some_key", 2);
/// map.entry("another_key", 3);
///
/// // The capacity of our map is not changed
/// assert_eq!(map.capacity(), capacity_before_into_keys);
/// ```
#[inline]
pub fn into_keys(self) -> (K1, K2) {
(self.base_v.into_key(), self.base_k.into_key())
}
/// Sets the value of the entry with the `VacantEntry`'s keys,
/// and returns a mutable reference to it.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
/// use double_map::dhash_map::Entry;
///
/// // So lets create some map
/// let mut map: DHashMap<&str, u32, i32> = DHashMap::new();
///
/// if let Ok(entry) = map.entry("poneyland", 0) {
/// match entry {
/// Entry::Occupied(_) => panic!("Something go wrong!!!"),
/// Entry::Vacant(vac_entry) => {
/// vac_entry.insert(37);
/// }
/// }
/// }
/// assert_eq!(map.get_key1(&"poneyland"), Some(&37));
/// ```
#[inline]
pub fn insert(self, value: V) -> &'a mut V {
let k2 = self.base_k.key().clone();
self.base_k.insert(self.base_v.key().clone());
let (_, v) = self.base_v.insert((k2, value));
v
}
}
/// A view into a single entry in a map, which may either be vacant or occupied.
///
/// This `enum` is constructed from the [`entry`] method on [`DHashMap`].
///
/// [`entry`]: DHashMap::entry
#[derive(Debug)]
pub enum Entry<'a, K1: 'a, K2: 'a, V: 'a> {
/// An occupied entry.
Occupied(OccupiedEntry<'a, K1, K2, V>),
/// A vacant entry.
Vacant(VacantEntry<'a, K1, K2, V>),
}
impl<'a, K1, K2, V> Entry<'a, K1, K2, V>
where
K1: Eq + Hash + Clone,
K2: Eq + Hash + Clone,
{
/// Ensures a value is in the entry by inserting the default if empty, and returns
/// a mutable reference to the value in the entry.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
///
/// let mut map: DHashMap<&str, u32, i32> = DHashMap::new();
///
/// match map.entry("poneyland", 0) {
/// Ok(entry) => {
/// entry.or_insert(3);
/// }
/// Err(_) => unreachable!(),
/// }
/// assert_eq!(map.get_key1(&"poneyland"), Some(&3));
///
/// map.entry("poneyland", 0).map(|entry| *entry.or_insert(10) *= 2);
/// assert_eq!(map.get_key1(&"poneyland"), Some(&6));
/// ```
#[inline]
pub fn or_insert(self, default: V) -> &'a mut V {
match self {
Entry::Occupied(entry) => entry.into_mut(),
Entry::Vacant(entry) => entry.insert(default),
}
}
/// Ensures a value is in the entry by inserting the result of the default function if empty,
/// and returns a mutable reference to the value in the entry.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
///
/// let mut map: DHashMap<&str, u32, String> = DHashMap::new();
/// let s = "hoho".to_owned();
///
/// match map.entry("poneyland", 0) {
/// Ok(entry) => {
/// entry.or_insert_with(|| s);
/// }
/// Err(_) => unreachable!(),
/// }
/// assert_eq!(map.get_key1("poneyland"), Some(&"hoho".to_owned()));
///
/// let k = "another string".to_owned();
/// map.entry("poneyland", 0).map(|entry| entry.or_insert_with(|| k).push_str("ho"));
/// assert_eq!(map.get_key1(&"poneyland"), Some(&"hohoho".to_owned()));
/// ```
#[inline]
pub fn or_insert_with<F: FnOnce() -> V>(self, default: F) -> &'a mut V {
match self {
Entry::Occupied(entry) => entry.into_mut(),
Entry::Vacant(entry) => entry.insert(default()),
}
}
/// Ensures a value is in the entry by inserting, if empty, the result of the default function.
/// This method allows generating key-derived (with using key # 1 `K1`) value for
/// insertion by providing the default function a reference to the key that was moved
/// during the `.entry(key)` method call.
///
/// The reference to the moved key is provided so that cloning or copying the key is
/// unnecessary, unlike with `.or_insert_with(|| ... )`.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
///
/// let mut map: DHashMap<&str, usize, u64> = DHashMap::new();
///
/// match map.entry("poneyland", 0) {
/// Ok(entry) => {
/// entry.or_insert_with_key1(|k1| k1.chars().count() as u64);
/// },
/// Err(_) => unreachable!(),
/// }
/// assert_eq!(map.get_key1(&"poneyland"), Some(&9));
///
/// map.entry("bearland", 1).map(
/// |ent| ent.or_insert_with_key1(|k1| (k1.chars().count() * 2) as u64)
/// );
/// assert_eq!(map.get_key1(&"bearland"), Some(&16));
/// ```
#[inline]
pub fn or_insert_with_key1<F: FnOnce(&K1) -> V>(self, default: F) -> &'a mut V {
match self {
Entry::Occupied(entry) => entry.into_mut(),
Entry::Vacant(entry) => {
let value = default(entry.key1());
entry.insert(value)
}
}
}
/// Ensures a value is in the entry by inserting, if empty, the result of the default function.
/// This method allows generating key-derived (with using key # 2 `K2`) value for
/// insertion by providing the default function a reference to the key that was moved
/// during the `.entry(key)` method call.
///
/// The reference to the moved key is provided so that cloning or copying the key is
/// unnecessary, unlike with `.or_insert_with(|| ... )`.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
///
/// let mut map: DHashMap<&str, usize, u64> = DHashMap::new();
///
/// match map.entry("poneyland", 10) {
/// Ok(entry) => {
/// entry.or_insert_with_key2(|k2| (k2 + 10) as u64);
/// },
/// Err(_) => unreachable!(),
/// }
/// assert_eq!(map.get_key1(&"poneyland"), Some(&20));
///
/// map.entry("bearland", 11).map(
/// |ent| ent.or_insert_with_key2(|k1| (k1 * 3) as u64)
/// );
/// assert_eq!(map.get_key1(&"bearland"), Some(&33));
/// ```
#[inline]
pub fn or_insert_with_key2<F: FnOnce(&K2) -> V>(self, default: F) -> &'a mut V {
match self {
Entry::Occupied(entry) => entry.into_mut(),
Entry::Vacant(entry) => {
let value = default(entry.key2());
entry.insert(value)
}
}
}
/// Ensures a value is in the entry by inserting, if empty, the result of the default function.
/// This method allows generating key-derived (with using key #1 of type `K1` and
/// key # 2 of type `K2`) values for insertion by providing the default function
/// a reference to the keys that were moved during the `.entry(key)` method call.
///
/// The reference to the moved keys is provided so that cloning or copying the key is
/// unnecessary, unlike with `.or_insert_with(|| ... )`.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
///
/// let mut map: DHashMap<&str, usize, u64> = DHashMap::new();
///
/// match map.entry("poneyland", 10) {
/// Ok(entry) => {
/// entry.or_insert_with_keys(|k1, k2| (k1.chars().count() + k2) as u64);
/// },
/// Err(_) => unreachable!(),
/// }
/// assert_eq!(map.get_key1(&"poneyland"), Some(&19));
///
/// map.entry("bearland", 11).map(
/// |ent| ent.or_insert_with_keys(|k1, k2| (k1.chars().count() + k2 * 3) as u64)
/// );
/// assert_eq!(map.get_key1(&"bearland"), Some(&41));
/// ```
#[inline]
pub fn or_insert_with_keys<F: FnOnce(&K1, &K2) -> V>(self, default: F) -> &'a mut V {
match self {
Entry::Occupied(entry) => entry.into_mut(),
Entry::Vacant(entry) => {
let value = default(entry.key1(), entry.key2());
entry.insert(value)
}
}
}
/// Returns a reference to this entry's first key (key #1).
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
///
/// let mut map: DHashMap<&str, u32, i32> = DHashMap::new();
///
/// // It is VacantEntry
/// match map.entry("poneyland", 0) {
/// Ok(entry) => {
/// // key equal to provided one
/// assert_eq!(entry.key1(), &"poneyland");
/// // we insert some value
/// entry.or_insert(25);
/// },
/// Err(_) => unreachable!(),
/// }
/// // As we can see, now this element exists
/// assert_eq!(map.get_key1(&"poneyland"), Some(&25));
///
/// // So now it is OccupiedEntry
/// match map.entry("poneyland", 0) {
/// Ok(entry) => {
/// // And key equals to provided one too
/// assert_eq!(entry.key1(), &"poneyland");
/// entry.or_insert(25);
/// },
/// Err(_) => unreachable!(),
/// }
/// ```
#[inline]
pub fn key1(&self) -> &K1 {
match *self {
Entry::Occupied(ref entry) => entry.key1(),
Entry::Vacant(ref entry) => entry.key1(),
}
}
/// Returns a reference to this entry's second key (key #2).
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
///
/// let mut map: DHashMap<&str, u32, i32> = DHashMap::new();
///
/// // It is VacantEntry
/// match map.entry("poneyland", 10) {
/// Ok(entry) => {
/// // key equal to provided one
/// assert_eq!(entry.key2(), &10);
/// // we insert some value
/// entry.or_insert(25);
/// },
/// Err(_) => unreachable!(),
/// }
/// // As we can see, now this element exists
/// assert_eq!(map.get_key2(&10), Some(&25));
///
/// // So now it is OccupiedEntry
/// match map.entry("poneyland", 10) {
/// Ok(entry) => {
/// // And key equals to provided one too
/// assert_eq!(entry.key2(), &10);
/// entry.or_insert(25);
/// },
/// Err(_) => unreachable!(),
/// }
/// ```
#[inline]
pub fn key2(&self) -> &K2 {
match *self {
Entry::Occupied(ref entry) => entry.key2(),
Entry::Vacant(ref entry) => entry.key2(),
}
}
/// Returns a reference to this entry's keys.
/// Return tuple of type (&'a K1, &'a K2).
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
///
/// let mut map: DHashMap<&str, u32, i32> = DHashMap::new();
///
/// // It is VacantEntry
/// match map.entry("poneyland", 10) {
/// Ok(entry) => {
/// // keys equal to provided one
/// assert_eq!(entry.keys(), (&"poneyland", &10));
/// // we insert some value
/// entry.or_insert(25);
/// },
/// Err(_) => unreachable!(),
/// }
/// // As we can see, now this element exists
/// assert_eq!(map.get_key1(&"poneyland"), Some(&25));
///
/// // So now it is OccupiedEntry
/// match map.entry("poneyland", 10) {
/// Ok(entry) => {
/// // And keys equal to provided one too
/// assert_eq!(entry.keys(), (&"poneyland", &10));
/// entry.or_insert(25);
/// },
/// Err(_) => unreachable!(),
/// }
/// ```
#[inline]
pub fn keys(&self) -> (&K1, &K2) {
match *self {
Entry::Occupied(ref entry) => entry.keys(),
Entry::Vacant(ref entry) => entry.keys(),
}
}
/// Provides in-place mutable access to an occupied entry before any
/// potential inserts into the map.
///
/// # Examples
///
/// ```
/// use double_map::DHashMap;
///
/// let mut map: DHashMap<&str, u32, u32> = DHashMap::new();
///
/// map.entry("poneyland", 1).map( |entry|
/// entry.and_modify(|value| { *value += 100 })
/// .or_insert(42)
/// );
/// assert_eq!(map.get_key1(&"poneyland"), Some(&42));
///
/// map.entry("poneyland", 1).map( |entry|
/// entry.and_modify(|value| { *value += 100 })
/// .or_insert(42)
/// );
/// assert_eq!(map.get_key1(&"poneyland"), Some(&142));
/// ```
#[inline]
pub fn and_modify<F>(self, f: F) -> Self
where
F: FnOnce(&mut V),
{
match self {
Entry::Occupied(mut entry) => {
f(entry.get_mut());
Entry::Occupied(entry)
}
Entry::Vacant(entry) => Entry::Vacant(entry),
}
}
}
impl<'a, K1, K2, V: Default> Entry<'a, K1, K2, V>
where
K1: Eq + Hash + Clone,
K2: Eq + Hash + Clone,
{
/// Ensures a value is in the entry by inserting the default value if empty,
/// and returns a mutable reference to the value in the entry.
///
/// # Examples
///
/// ```
/// # fn main() {
/// use double_map::DHashMap;
///
/// let mut map: DHashMap<&str, usize, Option<u32>> = DHashMap::new();
/// map.entry("poneyland", 1).map(|entry| entry.or_default());
///
/// assert_eq!(map.get_key1(&"poneyland"), Option::<&Option<u32>>::Some(&None));
/// # }
/// ```
#[inline]
pub fn or_default(self) -> &'a mut V {
match self {
Entry::Occupied(entry) => entry.into_mut(),
Entry::Vacant(entry) => entry.insert(Default::default()),
}
}
}
/// A view into an error kind returned by [`entry`](DHashMap::entry), [`insert`](DHashMap::insert),
/// [`try_insert`](DHashMap::try_insert) methods of the [`DHashMap`].
/// It is part of the [`EntryError`] structure, [`InsertError`] structure and [`TryInsertError`]
/// enum.
///
/// Explains why [`entry`](DHashMap::entry), [`insert`](DHashMap::insert),
/// [`try_insert`](DHashMap::try_insert) methods fail.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum ErrorKind {
/// Returns when key #1 is vacant, but key #2 already exists with some value.
VacantK1AndOccupiedK2,
/// Returns when key #1 already exists with some value, but key #2 is vacant.
OccupiedK1AndVacantK2,
/// Returns when both key #1 and key #2 already exist with some values, but point
/// to different entries (values).
KeysPointsToDiffEntries,
}
impl fmt::Display for ErrorKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let error_txt = match *self {
ErrorKind::OccupiedK1AndVacantK2 => "occupied key #1 but vacant key #2",
ErrorKind::VacantK1AndOccupiedK2 => "vacant key #1 but occupied key #2",
ErrorKind::KeysPointsToDiffEntries => {
"key #1 and key #2 exist, but point to different entries"
}
};
write!(f, "{}", error_txt)
}
}
impl std::error::Error for ErrorKind {}
/// The error returned by [`entry`](DHashMap::entry) method when there is no way to distinguish
/// which entry should be returned. For more information about error kinds look at [`ErrorKind`]
/// enum.
///
/// Contains the [`ErrorKind`] enum, and the values of provided keys (that can be used for another
/// purpose).
#[derive(Debug, PartialEq)]
pub struct EntryError<K1, K2> {
/// A view into an error kind returned by [`entry`](DHashMap::entry),
/// [`insert`](DHashMap::insert), [`try_insert`](DHashMap::try_insert) methods of the [`DHashMap`].
/// It is part of the [`EntryError`] structure, [`InsertError`] structure and [`TryInsertError`]
/// enum. Explains [`entry`](DHashMap::entry), [`insert`](DHashMap::insert),
/// [`try_insert`](DHashMap::try_insert) methods fail. For more information about error
/// kind look at [`ErrorKind`] enum.
pub error: ErrorKind,
/// The provided values of keys that were returned because of error. For more information about
/// error kind look at [`ErrorKind`] enum.
pub keys: (K1, K2),
}
impl<K1: Debug, K2: Debug> fmt::Display for EntryError<K1, K2> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let key_txt = match self.error {
ErrorKind::VacantK1AndOccupiedK2 => format!(
"key #1 = {:?} - vacant, but key #2 = {:?} - exists",
self.keys.0, self.keys.1
),
ErrorKind::OccupiedK1AndVacantK2 => format!(
"key #1 = {:?} - exists, but key #2 = {:?} - vacant",
self.keys.0, self.keys.1
),
ErrorKind::KeysPointsToDiffEntries => format!(
"key #1 = {:?} and key #2 = {:?} point to different entries",
self.keys.0, self.keys.1
),
};
write!(f, "failed to get entry, because {}", key_txt)
}
}
impl<K1: Debug, K2: Debug> std::error::Error for EntryError<K1, K2> {}
/// The error returned by [`insert`](DHashMap::insert) method (and also
/// [`try_insert`](DHashMap::try_insert) method) when there is no way to distinguish
/// how given value with key #1 and key #2 should be inserted. It is also part of the
/// [`TryInsertError`] enum which is returned by [`try_insert`](DHashMap::try_insert) method
/// of [`DHashMap`]. For more information about error kinds look at [`ErrorKind`] enum.
///
/// Contains the [`ErrorKind`] enum, the provided keys and value that were not inserted.
/// These returned keys and value can be used for another purpose.
#[derive(Debug, PartialEq)]
pub struct InsertError<K1, K2, V> {
/// A view into an error kind returned by [`entry`](DHashMap::entry),
/// [`insert`](DHashMap::insert), [`try_insert`](DHashMap::try_insert) methods of the [`DHashMap`].
/// It is part of the [`EntryError`] structure, [`InsertError`] structure and [`TryInsertError`]
/// enum. Explains [`entry`](DHashMap::entry), [`insert`](DHashMap::insert),
/// [`try_insert`](DHashMap::try_insert) methods fail. For more information about error
/// kind look at [`ErrorKind`] enum.
pub error: ErrorKind,
/// The provided keys that were returned because of error. For more information about
/// error kind look at [`ErrorKind`] enum.
pub keys: (K1, K2),
/// The value which was not inserted because of the error. For more information about error
/// kind look at [`ErrorKind`] enum.
pub value: V,
}
impl<K1: Debug, K2: Debug, V: Debug> fmt::Display for InsertError<K1, K2, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let key_txt = match self.error {
ErrorKind::VacantK1AndOccupiedK2 => format!(
"key #1 = {:?} - vacant, but key #2 = {:?} - exists",
self.keys.0, self.keys.1
),
ErrorKind::OccupiedK1AndVacantK2 => format!(
"key #1 = {:?} - exists, but key #2 = {:?} - vacant",
self.keys.0, self.keys.1
),
ErrorKind::KeysPointsToDiffEntries => format!(
"key #1 = {:?} and key #2 = {:?} point to different entries",
self.keys.0, self.keys.1
),
};
write!(
f,
"failed to insert {:?}, because of {}",
self.value, key_txt
)
}
}
impl<K1: Debug, K2: Debug, V: Debug> std::error::Error for InsertError<K1, K2, V> {}
/// The error returned by [`try_insert`](DHashMap::try_insert) (as a part of the [`TryInsertError`]
/// enum) when the keys already exist and point to the same value.
///
/// Contains the occupied entry, and the value that was not inserted. It is part of the
/// [`TryInsertError`] enum.
#[derive(Debug)]
pub struct OccupiedError<'a, K1: 'a, K2: 'a, V: 'a> {
/// The entry in the map that was already occupied. It contains [`OccupiedEntry`] structure
/// which is also a part of the [`Entry`] enum.
pub entry: OccupiedEntry<'a, K1, K2, V>,
/// The value which was not inserted, because the entry was already occupied.
pub value: V,
}
impl<'a, K1, K2, V> fmt::Display for OccupiedError<'a, K1, K2, V>
where
K1: Eq + Hash + Clone + Debug,
K2: Eq + Hash + Clone + Debug,
V: Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"failed to insert {:?}, key #1 = {:?} and key #2 = {:?} already exist with value {:?}",
self.value,
self.entry.key1(),
self.entry.key2(),
self.entry.get(),
)
}
}
impl<'a, K1, K2, V> std::error::Error for OccupiedError<'a, K1, K2, V>
where
K1: Eq + Hash + Clone + Debug,
K2: Eq + Hash + Clone + Debug,
V: Debug,
{
}
/// The error returned by [`try_insert`](DHashMap::try_insert) method when the keys already exist
/// and point to the same value (look at [`OccupiedError`]) or there is no way to distinguish how
/// given value with key #1 and key #2 should be inserted. For more information about error kinds
/// look at [`OccupiedError`], [`InsertError`] structures and [`ErrorKind`] enum.
///
/// Depending of error kind, this enum can contain:
/// - When there is [`TryInsertError::Occupied`] variant, it contains the occupied entry, and
/// the value that was not inserted (through [`OccupiedError`] structure).
/// - When there is [`TryInsertError::Insert`] variant, it contains the [`ErrorKind`] enum,
/// the provided keys and value that were not inserted (through [`InsertError`] structure).
#[derive(Debug)]
pub enum TryInsertError<'a, K1: 'a, K2: 'a, V: 'a> {
/// The error kind returned by [`try_insert`](DHashMap::try_insert) when the keys already
/// exist and point to the same value. Contains the [`OccupiedError`] structure.
Occupied(OccupiedError<'a, K1, K2, V>),
/// The error kind returned by [`try_insert`](DHashMap::try_insert) method when there is no
/// way to distinguish how given value with key #1 and key #2 should be inserted. For more
/// information about error kinds look at [`InsertError`] structure and [`ErrorKind`] enum.
///
/// Contains the [`InsertError`] structure.
Insert(InsertError<K1, K2, V>),
}
impl<'a, K1, K2, V> fmt::Display for TryInsertError<'a, K1, K2, V>
where
K1: Eq + Hash + Clone + Debug,
K2: Eq + Hash + Clone + Debug,
V: Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let txt = match self {
TryInsertError::Occupied(error) => error.to_string(),
TryInsertError::Insert(error) => error.to_string(),
};
write!(f, "{}", txt)
}
}
impl<'a, K1, K2, V> std::error::Error for TryInsertError<'a, K1, K2, V>
where
K1: Eq + Hash + Clone + Debug,
K2: Eq + Hash + Clone + Debug,
V: Debug,
{
}