1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
use std::mem::{transmute, MaybeUninit};
const RAND_DIV: f32 = 1.0 / 0xffff_ffff_u32 as f32;
#[allow(clippy::unnecessary_cast)]
const RAND_DIV_DOUBLE: f64 = 1.0 / 0xffff_ffff_u32 as f64;
pub trait Algorithm {
fn get_int(&mut self) -> u32;
fn get_float(&mut self) -> f32 {
if cfg!(feature = "libtcod-compat") {
self.get_int() as f32 * RAND_DIV
} else {
let low_exp = 0;
let high_exp = 127;
let mut bits = Bits::new(self);
let mut exp = high_exp - 1;
while exp > low_exp {
if bits.get_bit() != 0 {
break;
}
exp -= 1;
}
let mantissa = bits.algorithm.get_int() & 0x7FFFFF;
if mantissa == 0 && bits.get_bit() != 0 {
exp += 1;
}
let ans = (exp << 23) | mantissa;
f32::from_bits(ans)
}
}
fn get_double(&mut self) -> f64 {
if cfg!(feature = "libtcod-compat") {
f64::from(self.get_int()) * RAND_DIV_DOUBLE
} else {
let low_exp = 0;
let high_exp = 1023;
let mut bits = Bits::new(self);
let mut exp = high_exp - 1;
while exp > low_exp {
if bits.get_bit() != 0 {
break;
}
exp -= 1;
}
let mantissa = (u64::from(bits.algorithm.get_int()) << 32
| u64::from(bits.algorithm.get_int()))
& 0xFFFFFFFFFFFFF;
if mantissa == 0 && bits.get_bit() != 0 {
exp += 1;
}
let ans = (exp << 52) | mantissa;
f64::from_bits(ans)
}
}
}
#[derive(Clone, Copy)]
pub struct MersenneTwister {
mt: [u32; Self::MT19937_RECURRENCE_DEGREE],
cur_mt: usize,
}
impl MersenneTwister {
const MT19937: u32 = 1_812_433_253;
const MT19937_WORD_SIZE: usize = 32;
const MT19937_RECURRENCE_DEGREE: usize = 624;
const MT19937_SEPARATION_POINT: usize = 31;
const MT19937_MIDDLE_WORD: usize = 397;
const MT19937_RATIONAL_NORMAL_FORM_TWIST_MATRIX_COEFFICIENTS: u32 = 0x9908_B0DF;
const MT19937_TGFSR_R_TEMPERING_BIT_MASKS: (u32, u32) = (0x9D2C_5680, 0xEFC6_0000);
const MT19937_TGFSR_R_TEMPERING_BIT_SHIFTS: (u32, u32) = (7, 15);
const MT19937_ADDITIONAL_TEMPERING: (u32, u32, u32) = (11, 0xFFFF_FFFF, 18);
const MT19937_LOWER_MASK: u32 = (1 << (Self::MT19937_SEPARATION_POINT)) as u32;
const MT19937_UPPER_MASK: u32 = !Self::MT19937_LOWER_MASK;
pub fn new(seed: u32) -> Self {
Self {
cur_mt: 624,
mt: Self::mt_init(seed),
}
}
#[allow(unsafe_code)]
fn mt_init(seed: u32) -> [u32; Self::MT19937_RECURRENCE_DEGREE] {
let mut mt: [MaybeUninit<u32>; Self::MT19937_RECURRENCE_DEGREE] =
unsafe { MaybeUninit::uninit().assume_init() };
mt[0] = MaybeUninit::new(seed);
for i in 1..mt.len() {
mt[i] = MaybeUninit::new(unsafe {
Self::MT19937.wrapping_mul(
(*mt[i - 1].as_ptr()
^ (*mt[i - 1].as_ptr() >> (Self::MT19937_WORD_SIZE as u32 - 2)))
.wrapping_add(i as u32),
)
});
}
unsafe { transmute(mt) }
}
fn mt_rand(mt: &mut [u32; Self::MT19937_RECURRENCE_DEGREE], cur_mt: &mut usize) -> u32 {
if *cur_mt == Self::MT19937_RECURRENCE_DEGREE {
for i in 0..Self::MT19937_RECURRENCE_DEGREE - 1 {
let y = (mt[i] & Self::MT19937_LOWER_MASK) | (mt[i + 1] & Self::MT19937_UPPER_MASK);
if y & 1 == 0 {
mt[i] = mt[(i + Self::MT19937_MIDDLE_WORD) % Self::MT19937_RECURRENCE_DEGREE]
^ (y >> 1);
} else {
mt[i] = mt[(i + Self::MT19937_MIDDLE_WORD) % Self::MT19937_RECURRENCE_DEGREE]
^ (y >> 1)
^ Self::MT19937_RATIONAL_NORMAL_FORM_TWIST_MATRIX_COEFFICIENTS;
}
}
let y = (mt[Self::MT19937_RECURRENCE_DEGREE - 1] & Self::MT19937_LOWER_MASK)
| (mt[0] & Self::MT19937_UPPER_MASK);
if y & 1 == 0 {
mt[Self::MT19937_RECURRENCE_DEGREE - 1] =
mt[Self::MT19937_MIDDLE_WORD - 1] ^ (y >> 1);
} else {
mt[Self::MT19937_RECURRENCE_DEGREE - 1] = mt[Self::MT19937_MIDDLE_WORD - 1]
^ (y >> 1)
^ Self::MT19937_RATIONAL_NORMAL_FORM_TWIST_MATRIX_COEFFICIENTS;
}
*cur_mt = 0;
}
let mut y = mt[*cur_mt];
*cur_mt += 1;
y ^= y >> Self::MT19937_ADDITIONAL_TEMPERING.0;
y ^= (y << Self::MT19937_TGFSR_R_TEMPERING_BIT_SHIFTS.0)
& Self::MT19937_TGFSR_R_TEMPERING_BIT_MASKS.0;
y ^= (y << Self::MT19937_TGFSR_R_TEMPERING_BIT_SHIFTS.1)
& Self::MT19937_TGFSR_R_TEMPERING_BIT_MASKS.1;
y ^= y >> Self::MT19937_ADDITIONAL_TEMPERING.2;
y
}
}
impl std::fmt::Debug for MersenneTwister {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> Result<(), std::fmt::Error> {
write!(f, "MersenneTwister {{ cur_mt: {} }}", self.cur_mt)
}
}
impl Algorithm for MersenneTwister {
fn get_int(&mut self) -> u32 {
Self::mt_rand(&mut self.mt, &mut self.cur_mt)
}
}
#[derive(Clone, Copy)]
pub struct ComplementaryMultiplyWithCarry {
q: [u32; 4096],
c: u32,
cur: usize,
}
impl ComplementaryMultiplyWithCarry {
#[allow(unsafe_code)]
pub fn new(seed: u32) -> Self {
let mut s = seed;
let mut q: [MaybeUninit<u32>; 4096] = unsafe { MaybeUninit::uninit().assume_init() };
for qe in &mut q[..] {
s = s.wrapping_mul(1_103_515_245).wrapping_add(12345);
unsafe {
qe.as_mut_ptr().write(s);
}
}
let c = s.wrapping_mul(1_103_515_245).wrapping_add(12345) % 809_430_660;
let cur = 0;
Self {
q: unsafe { transmute(q) },
c,
cur,
}
}
fn get_number(&mut self) -> u32 {
self.cur = (self.cur + 1) & 4095;
let t = 18782_u64 * u64::from(self.q[self.cur]) + u64::from(self.c);
self.c = (t >> 32) as u32;
let mut x = (t + u64::from(self.c)) as u32;
if x < self.c {
x += 1;
self.c += 1;
}
if x.wrapping_add(1) == 0 {
self.c += 1;
x = 0;
}
self.q[self.cur] = 0xffff_fffe - x;
self.q[self.cur]
}
}
impl std::fmt::Debug for ComplementaryMultiplyWithCarry {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> Result<(), std::fmt::Error> {
write!(
f,
"ComplementaryMultiplyWithCarry {{ c: {}, cur: {} }}",
self.c, self.cur
)
}
}
impl Algorithm for ComplementaryMultiplyWithCarry {
fn get_int(&mut self) -> u32 {
self.get_number()
}
}
struct Bits<'a, A: Algorithm + ?Sized> {
algorithm: &'a mut A,
bits: u32,
bits_left: u32,
}
impl<'a, A: Algorithm + ?Sized> Bits<'a, A> {
fn new(algorithm: &'a mut A) -> Self {
Self {
algorithm,
bits: 0,
bits_left: 0,
}
}
fn get_bit(&mut self) -> u32 {
if self.bits_left == 0 {
self.bits = self.algorithm.get_int();
self.bits_left = 32;
}
let bit = self.bits & 1;
self.bits >>= 1;
self.bits_left -= 1;
bit
}
}