1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
//! `domtree` provides facilities a generic implementation to calculate the dominator tree of
//! a directed graph. The algorithm basically follows the description in
//! "A Simple, Fast Dominance Algorithm" by Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy.
//!
//! To implement the trait for your own graph structure, you need to prepare several fields:
//! ```ignore
//! #[derive(Clone)]
//! struct VecSet<Y>(Vec<Y>);
//!
//! impl<Y: Clone + Default> AssocSet<usize, Y> for VecSet<Y> {
//! fn get(&self, target: usize) -> Y {
//! self.0[target].clone()
//! }
//!
//! fn set(&mut self, key: usize, val: Y) {
//! self.0[key] = val;
//! }
//! }
//!
//! #[derive(Clone, Debug)]
//! struct HashMemberSet<T>(HashSet<T>);
//! impl<T : PartialEq + Eq + Hash> MemberSet<T> for HashMemberSet<T> {
//! fn contains(&self, target: T) -> bool {
//! self.0.contains(&target)
//! }
//!
//! fn insert(&mut self, target: T) {
//! self.0.insert(target);
//! }
//! }
//!
//! #[derive(Debug)]
//! struct Node {
//! tag: usize, // node's identifier
//! dom: Option<usize>, // node's immediate dominator
//! frontiers: UnsafeCell<HashMemberSet<usize>>, // node's dominance frontiers
//! incoming_edges: Vec<usize>, // node's in-edges
//! outgoing_edges: Vec<usize> // node's out-edges
//! }
//!
//! #[derive(Debug)]
//! struct Graph {
//! nodes: Vec<Node>,
//! }
//! ```
//! Then, one needs to first expose some APIs such that this crate can run DFS on the graph.
//! ```ignore
//! use std::iter::Cloned;
//! use std::slice::Iter;
//! use domtree::dfs::DFSGraph;
//! impl DFSGraph for Graph {
//! type Identifier = usize;
//! type Set<Y> = VecSet<Y> where Y: Clone + Default;
//! type SuccessorIter<'a> = Cloned<Iter<'a, usize>> where Self: 'a;
//!
//! fn create_set<Y>(&self) -> Self::Set<Y> where Y: Clone + Default {
//! let mut data = Vec::new();
//! data.resize(self.nodes.len(), Default::default());
//! VecSet(data)
//! }
//!
//! fn outgoing_edges<'a>(&'a self, id: Self::Identifier) -> Self::SuccessorIter<'a> {
//! self.nodes[id].outgoing_edges.iter().cloned()
//! }
//! }
//! ```
//! After this, one also need to specify how the algorithm can access the fields related to the
//! dominance tree.
//! ```ignore
//! impl DomTree for Graph {
//! type MutDomIter<'a> = Map<IterMut<'a, Node>, fn(&'a mut Node)->&'a mut Option<usize>> where Self: 'a;
//! type PredecessorIter<'a> = Cloned<Iter<'a, usize>> where Self: 'a;
//!
//! fn dom(&self, id: Self::Identifier) -> Option<Self::Identifier> {
//! self.nodes[id].dom.clone()
//! }
//!
//! fn set_dom(&mut self, id: Self::Identifier, target: Option<Self::Identifier>) {
//! self.nodes[id].dom = target;
//! }
//!
//! fn predecessor_iter<'a>(&'a self, id: Self::Identifier) -> Self::PredecessorIter<'a> {
//! self.nodes[id].incoming_edges.iter().cloned()
//! }
//!
//! fn doms_mut<'a>(&'a mut self) -> Self::MutDomIter<'a> {
//! self.nodes.iter_mut().map(|x|&mut x.dom)
//! }
//! }
//!
//! impl DominanceFrontier for Graph {
//! type FrontierSet = HashMemberSet<usize>;
//! type NodeIter<'a> = Range<usize> where Self: 'a ;
//!
//! fn frontiers_cell(&self, id: Self::Identifier) -> &UnsafeCell<Self::FrontierSet> {
//! &self.nodes[id].frontiers
//! }
//!
//! fn node_iter<'a>(&'a self) -> Self::NodeIter<'a> {
//! 0..self.nodes.len()
//! }
//! }
//! ```
//! Then, one can just run populate the dominance tree and the dominance frontiers
//! ```ignore
//! let mut g = random_graph(10000);
//! dump_graph(&g);
//! g.populate_dom(0);
//! g.populate_frontiers();
//! ```
use crate::dfs::DFSGraph;
use crate::set::{AssocSet, MemberSet};
use std::cell::UnsafeCell;
/// DFS related interfaces.
pub mod dfs;
/// Housekeeping data structure interfaces.
pub mod set;
#[cfg(test)]
mod test;
/// An iterator over the dominators of a given node.
pub struct DominatorIter<'a, T: DomTree> {
tree: &'a T,
current: T::Identifier,
}
impl<'a, T: DomTree> Iterator for DominatorIter<'a, T> {
type Item = T::Identifier;
fn next(&mut self) -> Option<Self::Item> {
let dom = self.tree.dom(self.current).filter(|x| *x != self.current);
if let Some(x) = dom {
self.current = x;
}
dom
}
}
/// Interfaces related to Dominance Tree construction.
pub trait DomTree: DFSGraph + Sized {
/// [`Self::MutDomIter`] is used in [`Self::doms_mut`] to get an iterator
/// over all nodes and return the mutable references to their immediate dominator identifiers.
type MutDomIter<'a>: Iterator<Item = &'a mut Option<Self::Identifier>>
where
Self: 'a;
/// [`Self::PredecessorIter`] is similiar to [`DFSGraph::SuccessorIter`], but it returns
/// incoming edges instead.
type PredecessorIter<'a>: Iterator<Item = Self::Identifier>
where
Self: 'a;
/// Returns the identifier of the immediate dominator of the given node.
fn dom(&self, id: Self::Identifier) -> Option<Self::Identifier>;
/// Updates the immediate dominator identifier of the given node.
fn set_dom(&mut self, id: Self::Identifier, target: Option<Self::Identifier>);
/// Returns an iterator over the incoming edges of the given node.
fn predecessor_iter<'a>(&'a self, id: Self::Identifier) -> Self::PredecessorIter<'a>;
/// Returns an iterator over all nodes which yields the mutable references to their immediate
/// dominator identifiers.
fn doms_mut<'a>(&'a mut self) -> Self::MutDomIter<'a>;
/// Returns an iterator over all the **strict** dominators of a node.
fn dom_iter(&self, id: Self::Identifier) -> DominatorIter<Self> {
DominatorIter {
tree: self,
current: id,
}
}
/// Calculate all the immediate dominator for all nodes. This will form the dominator tree.
fn populate_dom(&mut self, root: Self::Identifier) {
// two-pointer algorithm to trace LCA.
fn intersect<D: DomTree>(
tree: &D,
order_map: &D::Set<usize>,
mut x: D::Identifier,
mut y: D::Identifier,
) -> D::Identifier {
unsafe {
while x != y {
while order_map.get(x) < order_map.get(y) {
// safe because we are processing in reverse post order.
x = tree.dom(x).unwrap_unchecked();
}
while order_map.get(y) < order_map.get(x) {
// safe because we are processing in reverse post order.
y = tree.dom(y).unwrap_unchecked();
}
}
}
return x;
}
// initialize all immediate dominators to None.
self.doms_mut().for_each(|x| *x = None);
// set root to be its own immediate dominator.
self.set_dom(root, Some(root));
// establish post oder using DFS.
let post_order = self.post_order_sequence(root);
let mut post_order_map = self.create_set();
for (i, k) in post_order.iter().cloned().enumerate() {
post_order_map.set(k, i);
}
// Iterate until the fixed point is reached.
let mut changed = true;
while changed {
changed = false;
for (order, i) in post_order.iter().cloned().enumerate().rev() {
if i == root {
continue;
}
let dom = unsafe {
self.predecessor_iter(i)
.filter(|x| post_order_map.get(*x) > order)
.next()
// safe because we are processing in reverse post order.
.unwrap_unchecked()
};
let dom = self
.predecessor_iter(i)
.filter(|x| *x != dom && self.dom(*x).is_some())
.fold(dom, |dom, x| intersect(self, &post_order_map, x, dom));
if self.dom(i).map(|x| x != dom).unwrap_or(true) {
self.set_dom(i, Some(dom));
changed = true;
}
}
}
}
}
/// Interfaces related to dominance frontier calculation
pub trait DominanceFrontier: DomTree {
/// [`Self::FrontierSet`] is used to maintain the dominance frontier.
/// Each node should hold a separate [`Self::FrontierSet`].
type FrontierSet: MemberSet<Self::Identifier>;
/// [`Self::NodeIter`] is an iterator over all nodes of the graph.
type NodeIter<'a>: Iterator<Item = Self::Identifier>
where
Self: 'a;
/// Due to mutable reference limitations, the trait expects [`Self::FrontierSet`] to
/// be wrapped in a [`UnsafeCell`] to allow iterated update. This method is used to
/// access the [`UnsafeCell`].
fn frontiers_cell(&self, id: Self::Identifier) -> &UnsafeCell<Self::FrontierSet>;
/// A helper function that is auto derived for user to access the dominance frontiers of
/// the given node.
fn frontiers(&self, id: Self::Identifier) -> &Self::FrontierSet {
unsafe { &*self.frontiers_cell(id).get() }
}
/// Gets an iterator over all nodes of the graph.
fn node_iter<'a>(&'a self) -> Self::NodeIter<'a>;
/// Calculate the dominance frontiers of all nodes. The immediate dominators must be
/// calculated before calling this function. Otherwise, it will not crash but the answers can get
/// wrong.
fn populate_frontiers(&mut self) {
for i in self.node_iter() {
for mut p in self.predecessor_iter(i) {
if let Some(dom) = self.dom(i) {
while p != dom {
unsafe {
(*self.frontiers_cell(p).get()).insert(i);
}
if let Some(pdom) = self.dom(p) {
p = pdom;
} else {
break;
}
}
}
}
}
}
}