1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
#![crate_name = "dom_content_extraction"]
use crate::scraper::{Html, Selector};
use ego_tree::{NodeId, NodeRef, Tree};
use once_cell::sync::Lazy;

pub mod scraper {
    pub use scraper::*;
}

static BODY_SELECTOR: Lazy<Selector> =
    Lazy::new(|| Selector::parse("body").unwrap());

/// Prevent division by zero and convert integers into f32
#[inline]
fn normalize_denominator(value: u32) -> f32 {
    match value {
        0 => 1.0,
        _ => value as f32,
    }
}

pub struct DensityTree {
    pub tree: Tree<DensityNode>,
}

#[derive(Debug, Clone)]
pub struct DensityNode {
    pub node_id: NodeId,

    pub char_count: u32,
    pub tag_count: u32,
    pub link_char_count: u32,
    pub link_tag_count: u32,
    pub density: f32,
}

impl<'a> DensityTree {
    /// Create new Density tree with single root node
    pub fn new(node_id: NodeId) -> Self {
        Self {
            tree: Tree::new(DensityNode::new(node_id)),
        }
    }

    /// Create and calculate density tree from scraper::Html DOM tree
    pub fn from_document(document: &Html) -> Self {
        // NOTE: process possible errors (when page is completely broken)
        let body = &document.select(&BODY_SELECTOR).next().unwrap().to_owned();
        // NOTE: there is usable value in document, such as error field
        let body_node_id = body.id();
        let body_node = body.tree().get(body_node_id).unwrap();

        let mut density_tree = Self::new(body_node_id);
        Self::build_density_tree(body_node, &mut density_tree.tree.root_mut(), 1);
        density_tree.calculate_density_tree();
        density_tree
    }

    /// Sort nodes in ascendign order return them as vector, also
    /// skip nodes with zero density
    pub fn sorted_nodes(&'a self) -> Vec<&'a DensityNode> {
        let mut nodes = self
            .tree
            .values()
            .filter(|n| n.density.gt(&0.0))
            .collect::<Vec<&DensityNode>>();
        nodes.sort_by(|a, b| {
            a.density
                .partial_cmp(&b.density)
                .unwrap_or(std::cmp::Ordering::Equal)
        });
        nodes
    }

    /// Calculate composite text density index
    pub fn composite_text_density(
        char_count: u32,
        tag_count: u32,
        link_char_count: u32,
        link_tag_count: u32,
        body_tag_char_count: u32,
        body_tag_link_char_count: u32,
    ) -> f32 {
        // can guess whole expression will be zero
        if char_count == 0 {
            return 0.0;
        };

        // labeled same was as in paper's formula
        let ci = char_count as f32;
        let ti = normalize_denominator(tag_count);
        let nlci = normalize_denominator(char_count - link_char_count);
        let lci = link_char_count as f32;
        let cb = normalize_denominator(body_tag_char_count);
        let lcb = body_tag_link_char_count as f32;
        let lti = normalize_denominator(link_tag_count);

        // checks
        debug_assert!(nlci > 0.0);

        let density = ci / ti;

        let ln_1 = (ci / nlci) * lci;
        let ln_2 = (lcb / cb) * ci;
        let e = std::f32::consts::E;

        debug_assert!(ln_1 >= 0.0);
        debug_assert!(ln_2 >= 0.0);

        let log_base = (ln_1 + ln_2 + e).ln();

        let value = (ci / lcb) * (ti / lti);
        value.log(log_base) * density
    }

    /// Run computation process of density for each tree node
    pub fn calculate_density_tree(&mut self) {
        let body_tag_node = self.tree.root().value().clone();
        for node in self.tree.values_mut() {
            node.density = Self::composite_text_density(
                node.char_count,
                node.tag_count,
                node.link_char_count,
                node.link_tag_count,
                body_tag_node.char_count,
                body_tag_node.link_char_count,
            );
        }
    }

    /// Recursively build ego_tree::Tree
    /// This structure separated from tree scraper::Html,
    /// but same NodeId used, so it's possible to get document
    /// node from scraper::Html
    pub fn build_density_tree(
        node: ego_tree::NodeRef<scraper::node::Node>,
        density_node: &mut ego_tree::NodeMut<DensityNode>,
        _depth: usize,
    ) {
        for child in node.children() {
            // some nodes makes no sense
            match child.value() {
                scraper::Node::Element(elem) => {
                    if elem.name() == "script"
                        || elem.name() == "noscript"
                        || elem.name() == "style"
                    {
                        continue;
                    };
                }
                scraper::Node::Comment(_) => {
                    continue;
                }
                scraper::Node::Document => {
                    continue;
                }
                _ => {}
            };

            let child_density_node = DensityNode::new(child.id());
            let mut te = density_node.append(child_density_node);
            Self::build_density_tree(child, &mut te, _depth + 1);
        }

        match node.value() {
            scraper::Node::Text(text) => {
                let char_count = text.trim().len() as u32;
                density_node.value().char_count += char_count;
            }
            scraper::Node::Element(elem) => {
                let tag_count = 1;
                density_node.value().tag_count += tag_count;
                if elem.name() == "a" {
                    let link_tag_count = 1;
                    density_node.value().link_tag_count += link_tag_count;
                };
            }
            _ => {}
        }

        let char_count = density_node.value().char_count;
        let tag_count = density_node.value().tag_count;
        let link_tag_count = density_node.value().link_tag_count;
        let mut link_char_count = density_node.value().link_char_count;

        if tag_count > 0 {
            density_node.value().density = density_node.value().char_count as f32
                / density_node.value().tag_count as f32;
        };

        if node.parent().unwrap().value().as_element().unwrap().name() == "a" {
            link_char_count += char_count;
        };

        if let Some(mut parent) = density_node.parent() {
            parent.value().char_count += char_count;
            parent.value().tag_count += tag_count;
            parent.value().link_tag_count += link_tag_count;
            parent.value().link_char_count += link_char_count;
        };
    }
}

impl std::fmt::Debug for DensityTree {
    // Format tree with identation
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        fn pretty_print(
            f: &mut std::fmt::Formatter<'_>,
            node: NodeRef<DensityNode>,
            depth: usize,
        ) {
            for child in node.children() {
                let dashes = " ".repeat(2 * depth);
                let _ = writeln!(f, "{}{:?}", dashes, child.value());
                pretty_print(f, child, depth + 1);
            }
        }

        writeln!(f, "DensityTree {{")?;
        pretty_print(f, self.tree.root(), 1);
        writeln!(f, "}}")
    }
}

impl DensityNode {
    // Crate root node from NodeId with zero values
    pub fn new(node_id: NodeId) -> Self {
        Self {
            node_id,
            char_count: 0,
            tag_count: 0,
            link_char_count: 0,
            link_tag_count: 0,
            density: 0.0,
        }
    }
}

/// Helper function to extract node with id: `node_id` from scraper::Html
/// document
#[inline]
pub fn get_node_by_id(
    node_id: NodeId,
    document: &Html,
) -> ego_tree::NodeRef<'_, scraper::node::Node> {
    document.tree.get(node_id).unwrap()
}

/// Helper function to extract all text from scraper::Html from all descendants
/// nodes
pub fn get_node_text(node_id: NodeId, document: &Html) -> String {
    let mut text: Vec<String> = vec![];
    let root_node = get_node_by_id(node_id, document);
    for node in root_node.descendants() {
        if let Some(txt) = node.value().as_text() {
            let clean_text = txt.trim();
            if !clean_text.is_empty() {
                text.push(clean_text.to_string());
            };
        };
    }
    text.join(" ")
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::{fs, io, path};

    pub fn read_file(
        file_path: impl AsRef<path::Path>,
    ) -> Result<String, io::Error> {
        let content: String = fs::read_to_string(file_path)?;
        Ok(content)
    }

    pub fn build_dom(html: &str) -> Html {
        let document: Html = Html::parse_document(html);
        document
    }

    fn load_content(test_file_name: &str) -> Html {
        let content = read_file(format!("html/{}", test_file_name)).unwrap();
        build_dom(content.as_str())
    }

    #[test]
    fn test_normalize_denominator() {
        assert_eq!(normalize_denominator(32), 32.0);
        assert_eq!(normalize_denominator(0), 1.0);
    }

    #[test]
    fn test_load_file() {
        let content = read_file("html/test_1.html");
        assert_eq!(content.is_ok(), true);
        assert_eq!(content.unwrap().len() > 0, true);
    }

    #[test]
    fn test_build_dom() {
        let document = load_content("test_2.html");
        assert_eq!(document.errors.len() == 1, true);
    }

    #[test]
    fn test_composite_text_density() {
        let char_count = 100;
        let tag_count = 10;
        let link_char_count = 20;
        let link_tag_count = 4;
        let body_tag_char_count = 500;
        let body_tag_link_char_count = 100;

        let result = DensityTree::composite_text_density(
            char_count,
            tag_count,
            link_char_count,
            link_tag_count,
            body_tag_char_count,
            body_tag_link_char_count,
        );

        assert!(result.is_finite());
        assert!(result >= 0.0);

        // Test edge cases
        let result_zero_char_count = DensityTree::composite_text_density(
            0,
            tag_count,
            link_char_count,
            link_tag_count,
            body_tag_char_count,
            body_tag_link_char_count,
        );
        assert_eq!(result_zero_char_count, 0.0);

        let result_zero_tag_count = DensityTree::composite_text_density(
            0,
            tag_count,
            link_char_count,
            link_tag_count,
            body_tag_char_count,
            body_tag_link_char_count,
        );
        assert!(result_zero_tag_count.is_finite());
        assert!(result_zero_tag_count >= 0.0);
    }

    #[test]
    fn test_build_density_tree() {
        let content = read_file("html/test_1.html").unwrap();
        let document = build_dom(content.as_str());

        let dtree = DensityTree::from_document(&document);
        assert_eq!(dtree.tree.values().count(), 52);
    }

    #[test]
    fn test_sorted_density_results() {
        let document = load_content("test_1.html");

        let dtree = DensityTree::from_document(&document);
        let sorted_nodes = dtree.sorted_nodes();
        let node_id = sorted_nodes.last().unwrap().node_id;
        assert_eq!(format!("{:?}", node_id), "NodeId(22)");

        let node = get_node_by_id(node_id, &document);

        let node_attr = node.value().as_element().unwrap().attrs().last().unwrap();
        assert_eq!(node_attr.0, "class");
        assert_eq!(node_attr.1, "articleBody");
    }

    #[test]
    fn test_result_node_text() {
        let content = read_file("html/test_1.html").unwrap();
        let document = build_dom(content.as_str());

        let dtree = DensityTree::from_document(&document);
        let sorted_nodes = dtree.sorted_nodes();
        let node_id = sorted_nodes.last().unwrap().node_id;
        assert_eq!(get_node_text(node_id, &document).len(), 200);
    }

    #[test]
    fn test_print_dtree() {
        let content = read_file("html/test_2.html").unwrap();
        let document = build_dom(content.as_str());

        let dtree = DensityTree::from_document(&document);

        assert_eq!(format!("{:?}", dtree).lines().count(), 18);
    }

    #[test]
    fn test_leftovers() {
        let content = read_file("html/test_4.html").unwrap();
        let document = build_dom(content.as_str());

        let dtree = DensityTree::from_document(&document);
        let sorted_nodes = dtree.sorted_nodes();
        let node_id = sorted_nodes.last().unwrap().node_id;

        assert_eq!(format!("{:?}", node_id), "NodeId(12)");
    }
}