1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
use crate::Scalar;
use crate::Vector;
use crate::Vector3;
impl<const M: usize> Vector<M> {
pub fn normalize(&self) -> Vector<M> {
self * (1.0 / self.length())
}
pub fn length(&self) -> Scalar {
let mut total = 0.0;
for m in 0..M {
total += self[m][0].powi(2);
}
total.sqrt()
}
pub fn dimension_hop<const P: usize>(&self) -> Vector<P> {
let mut out = Vector::<P>::default();
for (p, p_data) in out.data.iter_mut().enumerate() {
if p < M {
p_data.insert(0, self[p][0]);
} else {
p_data.insert(0, 1.0);
}
}
out
}
pub fn sign_length(&self) -> Scalar {
self.length() * self.sum().signum()
}
pub fn dot_product(&self, rhs: &Vector<M>) -> Scalar {
let mut total = 0.0;
for m in 0..M {
total += self[m][0] * rhs[m][0];
}
total
}
}
impl Vector3 {
pub fn cross_product(&self, rhs: &Vector3) -> Self {
Self::from([
[self[1][0] * rhs[2][0] - self[2][0] * rhs[1][0]],
[self[2][0] * rhs[0][0] - self[0][0] * rhs[2][0]],
[self[0][0] * rhs[1][0] - self[1][0] * rhs[0][0]],
])
}
}