1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
/*
 * DMNTK - Decision Model and Notation Toolkit
 *
 * MIT license
 *
 * Copyright (c) 2018-2022 Dariusz Depta Engos Software
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 * Apache license, Version 2.0
 *
 * Copyright (c) 2018-2022 Dariusz Depta Engos Software
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//! Canvas.

use crate::errors::*;
use crate::plane::{Cell, Plane};
use crate::point::{Point, Points, POINT_ZERO};
use crate::rect::{Rect, Rectangles};
use dmntk_common::Result;

/// Number of layers in canvas.
pub const LAYER_COUNT: usize = 4;
/// Names of layers in canvas.
pub const LAYER_NAMES: [&str; LAYER_COUNT] = ["TEXT", "THIN", "BODY", "GRID"];
/// Layer containing original text of the decision table.
pub const LAYER_TEXT: usize = 0;
/// Layer containing all the regions with single lines.
pub const LAYER_THIN: usize = 1;
/// Layer containing decision table body without information item name.
pub const LAYER_BODY: usize = 2;
/// Layer containing grid of single lines.
pub const LAYER_GRID: usize = 3;

const CHAR_WHITE: char = ' ';
const CHAR_OUTER: char = '░';

const CORNER_TOP_LEFT: char = '┌';
const CORNER_BOTTOM_RIGHT: char = '┘';

const CORNERS_TOP_LEFT: [char; 4] = ['┌', '├', '┬', '┼'];
const CORNERS_TOP_RIGHT: [char; 4] = ['┐', '┤', '┬', '┼'];
const CORNERS_BOTTOM_RIGHT: [char; 4] = ['┘', '┤', '┴', '┼'];
const CORNERS_BOTTOM_LEFT: [char; 4] = ['└', '├', '┴', '┼'];

type Layer = usize;
type Layers = [char; LAYER_COUNT];

pub struct Canvas {
  /// Content of the canvas build from layers.
  content: Vec<Vec<Layers>>,
  /// Current cursor position in the canvas.
  cursor: Point,
  /// Position of the required double line crossing between inputs and outputs.
  cross: Option<Point>,
  /// Position of the optional double line crossing between outputs and annotations in horizontal decision table.
  cross_horz: Option<Point>,
  /// Position of the optional double line crossing between outputs and annotations in vertical decision table.
  cross_vert: Option<Point>,
  /// Optional information item name.
  pub information_item_name: Option<String>,
  /// Rectangle containing the body of the decision table.
  body_rect: Option<Rect>,
}

impl Canvas {
  ///
  fn recognize_information_item_name(&mut self) -> Result<()> {
    // search for information item name in the original text
    let layer = LAYER_TEXT;
    // move to the beginning of the canvas
    self.move_to(POINT_ZERO);
    // search for the top left corner of the decision table (must be present, error otherwise)
    self.search(layer, &['┌']).and_then(|(_, top_left)| {
      // search for the crossing of the top edge with double line (must be present, error otherwise)
      self.search(layer, &['╥']).and_then(|(_, top_edge)| {
        // if the edge is below the corner than the information item region is present
        // so try to recognize the whole information item name
        if top_left.y < top_edge.y {
          // move to the top-left corner of the decision table
          self.move_to(top_left);
          // move right along the top information item name edge until the corner is encountered
          self.search_right(layer, &['┐'], &['─']).and_then(|_| {
            // move down to the nearest crossing
            self.search_down(layer, &['┴', '┤', '┼'], &['│']).and_then(|(_, bottom_right)| {
              // move left until the left body edge
              self.search_left(layer, &['├'], &['─', '┬', '╥']).and_then(|_| {
                // move up until the original top-left corner is reached
                self.search_up(layer, &['┌'], &['│']).and_then(|(_, closing)| {
                  // verify if the rectangle may be closed and retrieve the text
                  self.close_rectangle(closing, top_left, bottom_right).map(|rect| {
                    let text = self.text_from_rect(layer, &rect);
                    self.information_item_name = Some(text);
                  })
                })
              })
            })
          })
        } else {
          // TODO report error when the left top corner is below top edge
          Ok(())
        }
      })
    })
  }

  ///
  fn recognize_crossings(&mut self) -> Result<()> {
    self.move_to(POINT_ZERO); // move to the top-left corner
    self.search(LAYER_TEXT, &['╬']).map(|(_, point)| {
      self.cross = Some(point);
      self.move_to(point);
      if let Ok((_, p)) = self.search_right(LAYER_TEXT, &['╬'], &['═', '╪']) {
        self.cross_horz = Some(p)
      }
      self.move_to(point);
      if let Ok((_, p)) = self.search_down(LAYER_TEXT, &['╬'], &['║', '╫']) {
        self.cross_vert = Some(p)
      }
      // TODO add validation if two crosses exist
    })
  }

  ///
  fn recognize_body_rect(&mut self) -> Result<Rect> {
    let layer = LAYER_TEXT;
    // move to the top-left corner
    self.move_to(POINT_ZERO);
    // find the first double line crossing
    self.search(layer, &['╬']).and_then(|(_, cross_point)| {
      // move up until the top edge of the body is reached
      self.search_up(layer, &['╥'], &['║', '╫', '╟', '╢']).and_then(|(_, top_point)| {
        // move down until the bottom edge of the body is reached
        self.search_down(layer, &['╨'], &['║', '╫', '╟', '╢', '╬']).and_then(|(_, bottom_point)| {
          // move again to the first crossing
          self.move_to(cross_point);
          // move left until the left edge of the body is reached
          self.search_left(layer, &['╞'], &['═', '╪', '╧', '╤']).and_then(|(_, left_point)| {
            // move right until the right edge of the body is reached
            self
              .search_right(layer, &['╡'], &['═', '╪', '╧', '╤', '╬'])
              .map(|(_, right_point)| Rect::new(left_point.x, top_point.y, right_point.x + 1, bottom_point.y + 1))
          })
        })
      })
    })
  }

  /// Replaces all double lines and double crossings with single lines.
  /// All character other than lines are replaced with whitespace.
  fn prepare_regions(&mut self, src: Layer, dst: Layer) {
    for row in self.content.iter_mut() {
      for col in row.iter_mut() {
        match col[src] {
          '┌' | '┐' | '└' | '┘' | '┬' | '┴' | '─' | '│' | '├' | '┼' | '┤' | ' ' | CHAR_OUTER => col[dst] = col[src],
          '╥' | '╤' => col[dst] = '┬',
          '║' => col[dst] = '│',
          '╨' | '╧' => col[dst] = '┴',
          '═' => col[dst] = '─',
          '╞' | '╟' => col[dst] = '├',
          '╡' | '╢' => col[dst] = '┤',
          '╫' | '╪' | '╬' => col[1] = '┼',
          _ => col[dst] = CHAR_WHITE,
        }
      }
    }
  }

  /// Removes the information item name region.
  fn remove_information_item_region(&mut self, src: Layer, dst: Layer) {
    if let Some(body_rect) = self.body_rect {
      let (left, top, right, bottom) = body_rect.unpack();
      if top > 0 {
        for y in 0..top - 1 {
          for x in left..right {
            for layer in dst..LAYER_COUNT {
              self.content[y][x][layer] = CHAR_OUTER;
            }
          }
        }
      }
      for x in left..right {
        match self.content[top][x][src] {
          '├' => self.content[top][x][dst] = '┌',
          '┴' => self.content[top][x][dst] = '─',
          '┤' => self.content[top][x][dst] = '┐',
          '┼' => self.content[top][x][dst] = '┬',
          _ => self.content[top][x][dst] = self.content[top][x][src],
        }
      }
      for y in top + 1..bottom {
        for x in left..right {
          self.content[y][x][dst] = self.content[y][x][src];
        }
      }
    }
  }

  /// Fills the lacking lines to constitute regular grid
  fn make_grid(&mut self, src: Layer, dst: Layer) {
    if let Some(body_rect) = self.body_rect {
      self.copy_layer(src, dst);
      let (left, top, right, bottom) = body_rect.unpack();
      for y in top..bottom {
        let mut has_horz_line = false;
        for x in left..right {
          if self.content[y][x][dst] == '─' {
            has_horz_line = true;
            break;
          }
        }
        if has_horz_line {
          for x in left..right {
            match self.content[y][x][dst] {
              '│' if x == left => self.content[y][x][dst] = '├',
              '│' if x == right - 1 => self.content[y][x][dst] = '┤',
              '│' => self.content[y][x][dst] = '┼',
              '┤' if x < right - 1 => self.content[y][x][dst] = '┼',
              '├' if x > 0 => self.content[y][x][dst] = '┼',
              CHAR_WHITE => self.content[y][x][dst] = '─',
              _ => {}
            }
          }
        }
      }
      for x in left..right {
        let mut has_vert_line = false;
        for y in top..bottom {
          if self.content[y][x][dst] == '│' {
            has_vert_line = true;
            break;
          }
        }
        if has_vert_line {
          for y in top..bottom {
            match self.content[y][x][dst] {
              '─' if y == top => self.content[y][x][dst] = '┬',
              '─' if y == bottom - 1 => self.content[y][x][dst] = '┴',
              '─' => self.content[y][x][dst] = '┼',
              '┴' if y < bottom - 1 => self.content[y][x][dst] = '┼',
              '┬' if y > top => self.content[y][x][dst] = '┼',
              CHAR_WHITE => self.content[y][x][dst] = '│',
              _ => {}
            }
          }
        }
      }
    }
  }

  /// Generates matrix plane describing parts of the analyzed decision table.
  /// The matrix is a rectangular set of cells, where each cell represents
  /// a single graphical element of a decision table like region with text,
  /// double line or double line crossing.
  pub fn plane(&mut self) -> Result<Plane> {
    let regions = self.recognize_regions()?;
    let mut plane: Plane = Default::default(); // the plane to be generated
    let mut row = 0; // current row index
    let mut col; // current column index
    let mut width = 0; // width of the plane
    let mut cross_col = None; // column index of the main crossing
    let mut cross_horz_col = None; // column index of the annotation crossing in horizontal decision table
    for y in 0..self.content.len() {
      if let Some(cross_point) = self.cross {
        if y == cross_point.y {
          for i in 0..width {
            if let Some(index) = cross_col {
              if index == i {
                plane.add_cell(row, Cell::MainDoubleCrossing);
                continue;
              }
            }
            if let Some(index) = cross_horz_col {
              if index == i {
                plane.add_cell(row, Cell::HorizontalDoubleCrossing);
                continue;
              }
            }
            plane.add_cell(row, Cell::HorizontalOutputDoubleLine);
          }
          plane.add_row();
          row += 1;
        }
      }
      if let Some(cross_vert_point) = self.cross_vert {
        if y == cross_vert_point.y {
          for i in 0..width {
            if let Some(index) = cross_col {
              if index == i {
                plane.add_cell(row, Cell::VerticalDoubleCrossing);
                continue;
              }
            }
            plane.add_cell(row, Cell::HorizontalAnnotationsDoubleLine);
          }
          plane.add_row();
          row += 1;
        }
      }
      col = 0;
      let mut matched = false;
      for x in 0..self.content[y].len() {
        if CORNERS_TOP_LEFT.contains(&self.content[y][x][LAYER_GRID]) {
          matched = true;
          if let Some(point) = self.cross {
            if x == point.x {
              cross_col = Some(col);
              plane.add_cell(row, Cell::VerticalOutputDoubleLine);
              col += 1;
            }
          }
          if let Some(point) = self.cross_horz {
            if x == point.x {
              cross_horz_col = Some(col);
              plane.add_cell(row, Cell::VerticalAnnotationDoubleLine);
              col += 1;
            }
          }
          let rect = self.recognize_rectangle(LAYER_GRID, Point::new(x, y))?;
          let mut found = false;
          for (i, region) in regions.iter().enumerate() {
            if region.contains(&rect) {
              let text = self.text_from_rect(LAYER_TEXT, region);
              plane.add_cell(row, Cell::Region(i, *region, text));
              found = true;
              break;
            }
          }
          if !found {
            return Err(canvas_region_not_found(rect));
          }
          col += 1;
        }
      }
      if matched {
        width = plane.row_len(row);
        plane.add_row();
        row += 1;
      }
    }
    plane.finalize()?;
    Ok(plane)
  }

  /// Recognizes all rectangular regions in layer.
  fn recognize_regions(&mut self) -> Result<Rectangles> {
    let layer = LAYER_THIN;
    let points = self.find_top_left_corners(layer);
    let mut rectangles = vec![];
    for point in points {
      let rectangle = self.recognize_region(layer, point)?;
      rectangles.push(rectangle);
    }
    Ok(rectangles)
  }

  /// Recognizes single rectangular region in specified **layer**.
  /// Recognition starts from the **top_left** position in layer.
  fn recognize_region(&mut self, layer: Layer, top_left: Point) -> Result<Rect> {
    // start in the top left corner of the rectangle
    self.move_to(top_left);
    // move right to the nearest top-right corner
    self.search_right(layer, &CORNERS_TOP_RIGHT, &['─', '┴']).and_then(|_| {
      // move down to the nearest bottom-right corner
      self.search_down(layer, &CORNERS_BOTTOM_RIGHT, &['│', '├']).and_then(|(_, bottom_right)| {
        // move left to the nearest bottom-left corner
        self.search_left(layer, &CORNERS_BOTTOM_LEFT, &['─', '┬']).and_then(|_| {
          // move up to the nearest top-left corner
          self
            .search_up(layer, &CORNERS_TOP_LEFT, &['│', '┤'])
            .and_then(|(_, closing)| self.close_rectangle(closing, top_left, bottom_right))
        })
      })
    })
  }

  fn recognize_rectangle(&mut self, layer: Layer, top_left: Point) -> Result<Rect> {
    // start in the top left corner of the rectangle
    self.move_to(top_left);
    // move right to the nearest corner, this is the top-right corner of the recognized rectangle
    self.search_right(layer, &['┼', '┬', '┤', '┐'], &['─']).and_then(|_| {
      // move down to the nearest corner, this is the bottom-right corner of the recognized rectangle
      self.search_down(layer, &['┼', '┴', '┤', '┘'], &['│']).and_then(|(_, bottom_right)| {
        // move left to the nearest corner, this is the bottom-left corner of the recognized rectangle
        self.search_left(layer, &['┼', '└', '├', '┴'], &['─']).and_then(|_| {
          // move up to the nearest corner, this is the top-left corner of the recognized rectangle
          self
            .search_up(layer, &['┼', '┬', '├', '┌'], &['│'])
            .and_then(|(_, closing)| self.close_rectangle(closing, top_left, bottom_right))
        })
      })
    })
  }

  fn close_rectangle(&self, closing: Point, top_left: Point, bottom_right: Point) -> Result<Rect> {
    if closing.overlays(top_left) {
      Ok(Rect::new(top_left.x, top_left.y, bottom_right.x + 1, bottom_right.y + 1))
    } else {
      Err(canvas_rectangle_not_closed(closing, top_left))
    }
  }

  /// Searches for all characters that constitute a top-left corner of a rectangle.
  /// Position of this character is the starting point for recognizing rectangles.
  /// Returns a vector of all top-left corner points found in specified **layer**.
  fn find_top_left_corners(&self, layer: Layer) -> Points {
    let mut points = vec![];
    for y in 0..self.content.len() {
      for x in 0..self.content[y].len() {
        if CORNERS_TOP_LEFT.contains(&self.content[y][x][layer]) {
          points.push(Point::new(x, y));
        }
      }
    }
    points
  }

  /// Moves the cursor to the specified position defined as a **point**.
  fn move_to(&mut self, point: Point) {
    let row_count = self.content.len();
    let y = if point.y < row_count {
      point.y
    } else if row_count > 0 {
      row_count - 1
    } else {
      0
    };
    let col_count = self.content[y].len();
    let x = if point.x < col_count {
      point.x
    } else if col_count > 0 {
      col_count - 1
    } else {
      0
    };
    self.cursor = Point::new(x, y);
  }

  /// Searches for characters specified in **searched** array.
  /// The search starts at the current cursor position and continues from left to right
  /// and from top to bottom of specified layer in canvas.
  /// When any of the specified character is found, the cursor position is updated
  /// and the function returns successfully.
  /// Otherwise the function reports an error.
  fn search(&mut self, layer: Layer, searched: &[char]) -> Result<(char, Point)> {
    let (x, y) = self.cursor.unwrap();
    for c in x..self.content[y].len() {
      let ch = self.content[y][c][layer];
      if searched.contains(&ch) {
        self.cursor = Point::new(c, y);
        return Ok((ch, self.cursor));
      }
    }
    for r in y + 1..self.content.len() {
      for c in 0..self.content[r].len() {
        let ch = self.content[r][c][layer];
        if searched.contains(&ch) {
          self.cursor = Point::new(c, r);
          return Ok((ch, self.cursor));
        }
      }
    }
    Err(canvas_expected_characters_not_found(searched.to_vec()))
  }

  fn search_up(&mut self, layer: usize, searched: &[char], allowed: &[char]) -> Result<(char, Point)> {
    let (x, mut y) = self.cursor.unwrap();
    while y > 0 {
      y -= 1;
      let ch = self.content[y][x][layer];
      if searched.contains(&ch) {
        self.cursor = Point::new(x, y);
        return Ok((ch, self.cursor));
      }
      if !allowed.contains(&ch) {
        return Err(canvas_character_is_not_allowed(ch, allowed.to_vec()));
      }
    }
    Err(canvas_expected_characters_not_found(searched.to_vec()))
  }

  fn search_left(&mut self, layer: usize, searched: &[char], allowed: &[char]) -> Result<(char, Point)> {
    let (mut x, y) = self.cursor.unwrap();
    while x > 0 {
      x -= 1;
      let ch = self.content[y][x][layer];
      if searched.contains(&ch) {
        self.cursor = Point::new(x, y);
        return Ok((ch, self.cursor));
      }
      if !allowed.contains(&ch) {
        return Err(canvas_character_is_not_allowed(ch, allowed.to_vec()));
      }
    }
    Err(canvas_expected_characters_not_found(searched.to_vec()))
  }

  fn search_right(&mut self, layer: usize, searched: &[char], allowed: &[char]) -> Result<(char, Point)> {
    let (mut x, y) = self.cursor.unwrap();
    while x < self.content[y].len() - 1 {
      x += 1;
      let ch = self.content[y][x][layer];
      if searched.contains(&ch) {
        self.cursor = Point::new(x, y);
        return Ok((ch, self.cursor));
      }
      if !allowed.contains(&ch) {
        return Err(canvas_character_is_not_allowed(ch, allowed.to_vec()));
      }
    }
    Err(canvas_expected_characters_not_found(searched.to_vec()))
  }

  fn search_down(&mut self, layer: usize, searched: &[char], allowed: &[char]) -> Result<(char, Point)> {
    let (x, mut y) = self.cursor.unwrap();
    while y < self.content.len() - 1 {
      y += 1;
      let ch = self.content[y][x][layer];
      if searched.contains(&ch) {
        self.cursor = Point::new(x, y);
        return Ok((ch, self.cursor));
      }
      if !allowed.contains(&ch) {
        return Err(canvas_character_is_not_allowed(ch, allowed.to_vec()));
      }
    }
    Err(canvas_expected_characters_not_found(searched.to_vec()))
  }

  /// Retrieves the text enclosed inside a **rectangle** in selected **layer**.
  fn text_from_rect(&self, layer: usize, r: &Rect) -> String {
    let mut text = String::new();
    let mut new_line = false;
    for row in self.content[(r.top + 1)..(r.bottom - 1)].iter() {
      for column in row[(r.left + 1)..(r.right - 1)].iter() {
        if new_line {
          text.push('\n');
          new_line = false;
        }
        text.push(column[layer]);
      }
      new_line = true;
    }
    text
  }

  /// Copies characters from source layer into destination layer.
  fn copy_layer(&mut self, src: Layer, dst: Layer) {
    for y in 0..self.content.len() {
      for x in 0..self.content[y].len() {
        self.content[y][x][dst] = self.content[y][x][src];
      }
    }
  }

  /// Displays the content of the text layer.
  pub fn display_text_layer(&self) {
    self.display_layer(LAYER_TEXT);
  }

  /// Displays the content of the thin lines layer.
  pub fn display_thin_layer(&self) {
    self.display_layer(LAYER_THIN);
  }

  /// Displays the content of the body part of decision table.
  pub fn display_body_layer(&self) {
    self.display_layer(LAYER_BODY);
  }

  /// Displays the content of the grid layer.
  pub fn display_grid_layer(&self) {
    self.display_layer(LAYER_GRID);
  }

  /// Displays the content of the specified layer.
  pub fn display_layer(&self, l: Layer) {
    if l < LAYER_COUNT {
      println!("{}", LAYER_NAMES[l]);
      for row in &self.content {
        for layers in row {
          print!("{}", layers[l])
        }
        println!()
      }
    }
  }
}

/// Prepares a **canvas** containing the textual definition of **decision table**.
/// This function traverse the input text line-by-line and adds non empty lines of
/// text to the canvas.
/// Adding lines to canvas **begins** with the line starting with the **┌** character
/// (U+250C BOX DRAWINGS LIGHT DOWN AND RIGHT), because this is the top left corner
/// of every decision table definition.
/// Adding lines to canvas **ends** with the line ending with the **┘** character
/// (U+2518 BOX DRAWINGS LIGHT UP AND LEFT), because this is the bottom right corner
/// of every decision table definition.
/// Shorter lines are filled up with additional characters to form a rectangular area.
pub fn scan(text: &str) -> Result<Canvas> {
  let mut width: usize = 0;
  let mut height: usize = 0;
  let mut content = vec![vec![]];
  // iterate the text line by line
  let mut start_adding = false;
  let mut end_adding = false;
  for line in text.lines() {
    // remove white characters
    let line = line.trim();
    if !line.is_empty() {
      if line.starts_with(CORNER_TOP_LEFT) && !start_adding && !end_adding {
        start_adding = true;
      }
      if start_adding && !end_adding {
        // add new, empty line
        content.push(vec![]);
        height += 1;
        let mut count = 0;
        let mut layers = [CHAR_WHITE; LAYER_COUNT];
        for chr in line.chars() {
          layers[0] = chr;
          content[height - 1].push(layers);
          count += 1;
        }
        if count > width {
          width = count;
        }
      }
      if line.ends_with(CORNER_BOTTOM_RIGHT) && start_adding && !end_adding {
        end_adding = true;
      }
    }
  }
  // fill shorter lines up to the width of the longest line
  if height > 0 && width > 0 {
    for row in &mut content {
      while row.len() < width {
        row.push([CHAR_OUTER; LAYER_COUNT]);
      }
    }
  }
  // create the canvas
  let mut canvas = Canvas {
    content,
    cursor: POINT_ZERO,
    cross: None,
    cross_horz: None,
    cross_vert: None,
    information_item_name: None,
    body_rect: None,
  };
  canvas.recognize_information_item_name()?;
  canvas.recognize_crossings()?;
  canvas.body_rect = Some(canvas.recognize_body_rect()?);
  canvas.prepare_regions(LAYER_TEXT, LAYER_THIN);
  canvas.remove_information_item_region(LAYER_THIN, LAYER_BODY);
  canvas.make_grid(LAYER_BODY, LAYER_GRID);
  Ok(canvas)
}