1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
// Copyright 2020-2021, Cerno
// Licensed under the MIT License
// See the LICENSE file or <http://opensource.org/licenses/MIT>
#![doc = include_str!("../README.md")]
#![warn(missing_debug_implementations)]
#![warn(missing_docs)]
#![warn(rust_2018_idioms)]
#![deny(clippy::all)]
#![deny(clippy::pedantic)]
#![deny(clippy::cargo)]
use std::{
convert::TryInto,
os::unix::io::{AsRawFd, FromRawFd, IntoRawFd, OwnedFd, RawFd},
};
use ioctl::{
dma_buf_begin_cpu_read_access, dma_buf_begin_cpu_readwrite_access,
dma_buf_begin_cpu_write_access, dma_buf_end_cpu_read_access, dma_buf_end_cpu_readwrite_access,
dma_buf_end_cpu_write_access,
};
use log::debug;
use memmap::MmapMut;
use nix::sys::stat::fstat;
mod ioctl;
/// Error type to map a [`DmaBuf`]
#[derive(thiserror::Error, Debug)]
pub enum MapError {
/// An Error occured while accessing the buffer file descriptor
#[error("Could not access the buffer file descriptor: {reason}")]
FdAccess {
/// Description of the Error
reason: String,
/// Source of the Error
source: std::io::Error,
},
/// An Error occured while mapping the buffer file descriptor
#[error("Could not map the buffer file descriptor: {reason}")]
MappingFailed {
/// Description of the Error
reason: String,
/// Source of the Error
source: std::io::Error,
},
}
/// A DMA-Buf buffer
#[derive(Debug)]
pub struct DmaBuf {
fd: OwnedFd,
}
impl DmaBuf {
/// Maps a `DmaBuf` for the CPU to access it
///
/// # Panics
///
/// If the buffer size reported by the kernel (`i64`) cannot fit into an `usize`.
///
/// # Errors
///
/// Will return an error if either the Buffer's length can't be retrieved, or if the mmap call
/// fails.
pub fn memory_map(self) -> Result<MappedDmaBuf, MapError> {
let raw_fd = self.as_raw_fd();
debug!("Mapping DMA-Buf buffer with File Descriptor {:#?}", self.fd);
let stat = fstat(raw_fd).map_err(|e| MapError::FdAccess {
reason: e.to_string(),
source: std::io::Error::from(e),
})?;
let len = stat.st_size.try_into().unwrap();
debug!("Valid buffer, size {}", len);
let mmap = unsafe { MmapMut::map_mut(raw_fd) }.map_err(|e| MapError::MappingFailed {
reason: e.to_string(),
source: e,
})?;
debug!("Memory Mapping Done");
Ok(MappedDmaBuf {
buf: self,
len,
mmap,
})
}
}
/// A `DmaBuf` mapped in memory
pub struct MappedDmaBuf {
buf: DmaBuf,
len: usize,
mmap: MmapMut,
}
/// Error type to access a [`MappedDmaBuf`]
#[derive(Debug, thiserror::Error)]
pub enum BufferError {
/// An Error occured while accessing the buffer file descriptor
#[error("Could not access the buffer: {reason}")]
FdAccess {
/// Description of the Error
reason: String,
/// Source of the Error
source: std::io::Error,
},
/// An Error occured in the closure
#[error("The closure returned an error: {0}")]
Closure(Box<dyn std::error::Error>),
}
impl MappedDmaBuf {
/// Calls a closure to read the buffer content
///
/// DMA-Buf requires the user-space to call the `DMA_BUF_IOCTL_SYNC` ioctl before and after any
/// CPU access to a buffer in order to maintain the cache coherency. The closure will be run
/// with those primitives called for a read access from the CPU.
///
/// The result of the closure will be returned.
///
/// # Errors
///
/// Will return [Error] if the underlying ioctl or the closure fails
pub fn read<A, F, R>(&self, f: F, arg: Option<A>) -> Result<R, BufferError>
where
F: Fn(&[u8], Option<A>) -> Result<R, Box<dyn std::error::Error>>,
{
let raw_fd = self.as_raw_fd();
debug!("Preparing the buffer for read access");
dma_buf_begin_cpu_read_access(raw_fd)?;
debug!("Accessing the buffer");
let ret = f(&self.mmap, arg)
.map(|v| {
debug!("Closure done without error");
v
})
.map_err(|e| {
debug!("Closure encountered an error {}", e);
BufferError::Closure(e)
});
dma_buf_end_cpu_read_access(raw_fd)?;
debug!("Buffer access done");
ret
}
/// Calls a closure to read from and write to the buffer content
///
/// DMA-Buf requires the user-space to call the `DMA_BUF_IOCTL_SYNC` ioctl before and after any
/// CPU access to a buffer in order to maintain the cache coherency. The closure will be run
/// with those primitives called for a read and write access from the CPU.
///
/// The result of the closure will be returned on success. On failure, the closure must return
/// `Error::Closure`
///
/// # Errors
///
/// Will return [Error] if the underlying ioctl or the closure fails
pub fn readwrite<A, F, R>(&mut self, f: F, arg: Option<A>) -> Result<R, BufferError>
where
F: Fn(&mut [u8], Option<A>) -> Result<R, Box<dyn std::error::Error>>,
{
let raw_fd = self.as_raw_fd();
debug!("Preparing the buffer for read/write access");
dma_buf_begin_cpu_readwrite_access(raw_fd)?;
debug!("Accessing the buffer");
let ret = f(&mut self.mmap, arg)
.map(|v| {
debug!("Closure done without error");
v
})
.map_err(|e| {
debug!("Closure encountered an error {}", e);
BufferError::Closure(e)
});
dma_buf_end_cpu_readwrite_access(raw_fd)?;
debug!("Buffer access done");
ret
}
/// Calls a closure to read from and write to the buffer content
///
/// DMA-Buf requires the user-space to call the `DMA_BUF_IOCTL_SYNC` ioctl before and after any
/// CPU access to a buffer in order to maintain the cache coherency. The closure will be run
/// with those primitives called for a read and write access from the CPU.
///
/// The closure must return () on success. On failure, the closure must return `Error::Closure`.
///
/// # Errors
///
/// Will return [Error] if the underlying ioctl or the closure fails
pub fn write<A, F>(&mut self, f: F, arg: Option<A>) -> Result<(), BufferError>
where
F: Fn(&mut [u8], Option<A>) -> Result<(), Box<dyn std::error::Error>>,
{
let raw_fd = self.as_raw_fd();
debug!("Preparing the buffer for write access");
dma_buf_begin_cpu_write_access(raw_fd)?;
debug!("Accessing the buffer");
let ret = f(&mut self.mmap, arg)
.map(|()| {
debug!("Closure done without error");
})
.map_err(|e| {
debug!("Closure encountered an error {}", e);
BufferError::Closure(e)
});
dma_buf_end_cpu_write_access(raw_fd)?;
debug!("Buffer access done");
ret
}
}
impl From<OwnedFd> for DmaBuf {
fn from(owned: OwnedFd) -> Self {
unsafe { Self::from_raw_fd(owned.into_raw_fd()) }
}
}
impl std::os::unix::io::AsRawFd for DmaBuf {
fn as_raw_fd(&self) -> RawFd {
self.fd.as_raw_fd()
}
}
impl std::os::unix::io::AsRawFd for MappedDmaBuf {
fn as_raw_fd(&self) -> RawFd {
self.buf.as_raw_fd()
}
}
impl std::os::unix::io::FromRawFd for DmaBuf {
unsafe fn from_raw_fd(fd: RawFd) -> Self {
debug!("Importing DMABuf from File Descriptor {}", fd);
Self {
fd: OwnedFd::from_raw_fd(fd),
}
}
}
impl std::fmt::Debug for MappedDmaBuf {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("MappedDmaBuf")
.field("DmaBuf", &self.buf)
.field("len", &self.len)
.field("address", &self.mmap.as_ptr())
.finish()
}
}