1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
use std::io;
use std::ops::{Deref, DerefMut};
use async_trait::async_trait;
use distant_auth::{AuthHandler, Authenticate, Verifier};
use log::*;
use serde::{Deserialize, Serialize};
use tokio::sync::oneshot;
#[cfg(test)]
use crate::common::InmemoryTransport;
use crate::common::{
Backup, FramedTransport, HeapSecretKey, Keychain, KeychainResult, Reconnectable, Transport,
};
/// Id of the connection
pub type ConnectionId = u32;
/// Represents a connection from either the client or server side
#[derive(Debug)]
pub enum Connection<T> {
/// Connection from the client side
Client {
/// Unique id associated with the connection
id: ConnectionId,
/// One-time password (OTP) for use in reauthenticating with the server
reauth_otp: HeapSecretKey,
/// Underlying transport used to communicate
transport: FramedTransport<T>,
},
/// Connection from the server side
Server {
/// Unique id associated with the connection
id: ConnectionId,
/// Used to send the backup into storage when the connection is dropped
tx: oneshot::Sender<Backup>,
/// Underlying transport used to communicate
transport: FramedTransport<T>,
},
}
impl<T> Deref for Connection<T> {
type Target = FramedTransport<T>;
fn deref(&self) -> &Self::Target {
match self {
Self::Client { transport, .. } => transport,
Self::Server { transport, .. } => transport,
}
}
}
impl<T> DerefMut for Connection<T> {
fn deref_mut(&mut self) -> &mut Self::Target {
match self {
Self::Client { transport, .. } => transport,
Self::Server { transport, .. } => transport,
}
}
}
impl<T> Drop for Connection<T> {
/// On drop for a server connection, the connection's backup will be sent via `tx`. For a
/// client connection, nothing happens.
fn drop(&mut self) {
match self {
Self::Client { .. } => (),
Self::Server { tx, transport, .. } => {
// NOTE: We grab the current backup state and store it using the tx, replacing
// the backup with a default and the tx with a disconnected one
let backup = std::mem::take(&mut transport.backup);
let tx = std::mem::replace(tx, oneshot::channel().0);
let _ = tx.send(backup);
}
}
}
}
#[async_trait]
impl<T> Reconnectable for Connection<T>
where
T: Transport,
{
/// Attempts to re-establish a connection.
///
/// ### Client
///
/// For a client, this means performing an actual [`reconnect`] on the underlying
/// [`Transport`], re-establishing an encrypted codec, submitting a request to the server to
/// reauthenticate using a previously-derived OTP, and refreshing the OTP for use in a future
/// reauthentication.
///
/// ### Server
///
/// For a server, this will fail as unsupported.
///
/// [`reconnect`]: Reconnectable::reconnect
async fn reconnect(&mut self) -> io::Result<()> {
async fn reconnect_client<T: Transport>(
id: ConnectionId,
reauth_otp: HeapSecretKey,
transport: &mut FramedTransport<T>,
) -> io::Result<(ConnectionId, HeapSecretKey)> {
// Re-establish a raw connection
debug!("[Conn {id}] Re-establishing connection");
Reconnectable::reconnect(transport).await?;
// Perform a handshake to ensure that the connection is properly established and encrypted
debug!("[Conn {id}] Performing handshake");
transport.client_handshake().await?;
// Communicate that we are an existing connection
debug!("[Conn {id}] Performing re-authentication");
transport
.write_frame_for(&ConnectType::Reconnect {
id,
otp: reauth_otp.unprotected_into_bytes(),
})
.await?;
// Derive an OTP for reauthentication
debug!("[Conn {id}] Deriving future OTP for reauthentication");
let reauth_otp = transport.exchange_keys().await?.into_heap_secret_key();
Ok((id, reauth_otp))
}
match self {
Self::Client {
id,
transport,
reauth_otp,
} => {
// Freeze our backup as we don't want the connection logic to alter it, attempt to
// perform the reconnection, and unfreeze our backup regardless of the result
let (new_id, new_reauth_otp) = {
transport.backup.freeze();
let result = reconnect_client(*id, reauth_otp.clone(), transport).await;
transport.backup.unfreeze();
result?
};
// Perform synchronization
debug!("[Conn {id}] Synchronizing frame state");
transport.synchronize().await?;
// Everything has succeeded, so we now will update our id and reauth otp
info!("[Conn {id}] Reconnect completed successfully! Assigning new id {new_id}");
*id = new_id;
*reauth_otp = new_reauth_otp;
Ok(())
}
Self::Server { .. } => Err(io::Error::new(
io::ErrorKind::Unsupported,
"Server connection cannot reconnect",
)),
}
}
}
/// Type of connection to perform
#[derive(Debug, Serialize, Deserialize)]
enum ConnectType {
/// Indicates that the connection from client to server is no and not a reconnection
Connect,
/// Indicates that the connection from client to server is a reconnection and should attempt to
/// use the connection id and OTP to authenticate
Reconnect {
/// Id of the connection to reauthenticate
id: ConnectionId,
/// Raw bytes of the OTP
#[serde(with = "serde_bytes")]
otp: Vec<u8>,
},
}
impl<T> Connection<T>
where
T: Transport,
{
/// Transforms a raw [`Transport`] into an established [`Connection`] from the client-side by
/// performing the following:
///
/// 1. Handshakes to derive the appropriate [`Codec`](crate::Codec) to use
/// 2. Authenticates the established connection to ensure it is valid
/// 3. Restores pre-existing state using the provided backup, replaying any missing frames and
/// receiving any frames from the other side
pub async fn client<H: AuthHandler + Send>(transport: T, handler: H) -> io::Result<Self> {
let id: ConnectionId = rand::random();
// Perform a handshake to ensure that the connection is properly established and encrypted
debug!("[Conn {id}] Performing handshake");
let mut transport: FramedTransport<T> =
FramedTransport::from_client_handshake(transport).await?;
// Communicate that we are a new connection
debug!("[Conn {id}] Communicating that this is a new connection");
transport.write_frame_for(&ConnectType::Connect).await?;
// Receive the new id for the connection
let id = {
debug!("[Conn {id}] Receiving new connection id");
let new_id = transport
.read_frame_as::<ConnectionId>()
.await?
.ok_or_else(|| {
io::Error::new(io::ErrorKind::Other, "Missing connection id frame")
})?;
debug!("[Conn {id}] Resetting id to {new_id}");
new_id
};
// Authenticate the transport with the server-side
debug!("[Conn {id}] Performing authentication");
transport.authenticate(handler).await?;
// Derive an OTP for reauthentication
debug!("[Conn {id}] Deriving future OTP for reauthentication");
let reauth_otp = transport.exchange_keys().await?.into_heap_secret_key();
info!("[Conn {id}] Connect completed successfully!");
Ok(Self::Client {
id,
reauth_otp,
transport,
})
}
/// Transforms a raw [`Transport`] into an established [`Connection`] from the server-side by
/// performing the following:
///
/// 1. Handshakes to derive the appropriate [`Codec`](crate::Codec) to use
/// 2. Authenticates the established connection to ensure it is valid by either using the
/// given `verifier` or, if working with an existing client connection, will validate an OTP
/// from our database
/// 3. Restores pre-existing state using the provided backup, replaying any missing frames and
/// receiving any frames from the other side
pub async fn server(
transport: T,
verifier: &Verifier,
keychain: Keychain<oneshot::Receiver<Backup>>,
) -> io::Result<Self> {
let id: ConnectionId = rand::random();
// Perform a handshake to ensure that the connection is properly established and encrypted
debug!("[Conn {id}] Performing handshake");
let mut transport: FramedTransport<T> =
FramedTransport::from_server_handshake(transport).await?;
// Receive a client id, look up to see if the client id exists already
//
// 1. If it already exists, wait for a password to follow, which is a one-time password used by
// the client. If the password is correct, then generate a new one-time client id and
// password for a future connection (only updating if the connection fully completes) and
// send it to the client, and then perform a replay situation
//
// 2. If it does not exist, ignore the client id and password. Generate a new client id to send
// to the client. Perform verification like usual. Then generate a one-time password and
// send it to the client.
debug!("[Conn {id}] Waiting for connection type");
let connection_type = transport
.read_frame_as::<ConnectType>()
.await?
.ok_or_else(|| io::Error::new(io::ErrorKind::Other, "Missing connection type frame"))?;
// Create a oneshot channel used to relay the backup when the connection is dropped
let (tx, rx) = oneshot::channel();
// Based on the connection type, we either try to find and validate an existing connection
// or we perform normal verification
let id = match connection_type {
ConnectType::Connect => {
// Communicate the connection id
debug!("[Conn {id}] Telling other side to change connection id");
transport.write_frame_for(&id).await?;
// Perform authentication to ensure the connection is valid
debug!("[Conn {id}] Verifying connection");
verifier.verify(&mut transport).await?;
// Derive an OTP for reauthentication
debug!("[Conn {id}] Deriving future OTP for reauthentication");
let reauth_otp = transport.exchange_keys().await?.into_heap_secret_key();
// Store the id, OTP, and backup retrieval in our database
info!("[Conn {id}] Connect completed successfully!");
keychain.insert(id.to_string(), reauth_otp, rx).await;
id
}
ConnectType::Reconnect { id: other_id, otp } => {
let reauth_otp = HeapSecretKey::from(otp);
debug!("[Conn {id}] Checking if {other_id} exists and has matching OTP");
match keychain
.remove_if_has_key(other_id.to_string(), reauth_otp.clone())
.await
{
KeychainResult::Ok(x) => {
// Match found, so we want ot update our id to be the pre-existing id
debug!("[Conn {id}] Reassigning to {other_id}");
let id = other_id;
// Grab the old backup
debug!("[Conn {id}] Acquiring backup for existing connection");
let backup = match x.await {
Ok(backup) => backup,
Err(_) => {
warn!("[Conn {id}] Missing backup, will use fresh copy");
Backup::new()
}
};
macro_rules! unwrap_or_fail {
($action:expr) => {
unwrap_or_fail!(backup, $action)
};
($backup:expr, $action:expr) => {{
match $action {
Ok(x) => x,
Err(x) => {
error!("[Conn {id}] Encountered error, restoring with old backup");
let _ = tx.send($backup);
keychain.insert(id.to_string(), reauth_otp, rx).await;
return Err(x);
}
}
}};
}
// Derive an OTP for reauthentication
debug!("[Conn {id}] Deriving future OTP for reauthentication");
let new_reauth_otp =
unwrap_or_fail!(transport.exchange_keys().await).into_heap_secret_key();
// Replace our backup with the old one
debug!("[Conn {id}] Restoring backup");
transport.backup = backup;
// Synchronize using the provided backup
debug!("[Conn {id}] Synchronizing frame state");
unwrap_or_fail!(transport.backup, transport.synchronize().await);
// Store the id, OTP, and backup retrieval in our database
info!("[Conn {id}] Reconnect restoration completed successfully!");
keychain.insert(id.to_string(), new_reauth_otp, rx).await;
id
}
KeychainResult::InvalidPassword => {
return Err(io::Error::new(
io::ErrorKind::PermissionDenied,
"Invalid OTP for reconnect",
));
}
KeychainResult::InvalidId => {
return Err(io::Error::new(
io::ErrorKind::PermissionDenied,
"Invalid id for reconnect",
));
}
}
}
};
Ok(Self::Server { id, tx, transport })
}
}
#[cfg(test)]
impl Connection<InmemoryTransport> {
/// Establishes a pair of [`Connection`]s using [`InmemoryTransport`] underneath, returning
/// them in the form (client, server).
///
/// ### Note
///
/// This skips handshakes, authentication, and backup processing. These connections cannot be
/// reconnected and have no encryption.
pub fn pair(buffer: usize) -> (Self, Self) {
let id = rand::random::<ConnectionId>();
let (t1, t2) = FramedTransport::pair(buffer);
let client = Connection::Client {
id,
reauth_otp: HeapSecretKey::generate(32).unwrap(),
transport: t1,
};
let server = Connection::Server {
id,
tx: oneshot::channel().0,
transport: t2,
};
(client, server)
}
}
impl<T> Connection<T> {
/// Returns the id of the connection.
pub fn id(&self) -> ConnectionId {
match self {
Self::Client { id, .. } => *id,
Self::Server { id, .. } => *id,
}
}
}
#[cfg(test)]
impl<T> Connection<T> {
/// Returns the OTP associated with the connection, or none if connection is server-side.
pub fn otp(&self) -> Option<&HeapSecretKey> {
match self {
Self::Client { reauth_otp, .. } => Some(reauth_otp),
Self::Server { .. } => None,
}
}
/// Returns a reference to the underlying transport.
pub fn transport(&self) -> &FramedTransport<T> {
match self {
Self::Client { transport, .. } => transport,
Self::Server { transport, .. } => transport,
}
}
/// Returns a mutable reference to the underlying transport.
pub fn mut_transport(&mut self) -> &mut FramedTransport<T> {
match self {
Self::Client { transport, .. } => transport,
Self::Server { transport, .. } => transport,
}
}
}
#[cfg(test)]
impl<T: Transport> Connection<T> {
pub fn test_client(transport: T) -> Self {
Self::Client {
id: rand::random(),
reauth_otp: HeapSecretKey::generate(32).unwrap(),
transport: FramedTransport::plain(transport),
}
}
}
#[cfg(test)]
mod tests {
use std::sync::Arc;
use distant_auth::msg::Challenge;
use distant_auth::{Authenticator, DummyAuthHandler};
use test_log::test;
use super::*;
use crate::common::Frame;
#[test(tokio::test)]
async fn client_should_fail_if_codec_handshake_fails() {
let (mut t1, t2) = FramedTransport::pair(100);
// Spawn a task to perform the client connection so we don't deadlock while simulating the
// server actions on the other side
let task = tokio::spawn(async move {
Connection::client(t2.into_inner(), DummyAuthHandler)
.await
.unwrap()
});
// Send garbage to fail the handshake
t1.write_frame(Frame::new(b"invalid")).await.unwrap();
// Client should fail
task.await.unwrap_err();
}
#[test(tokio::test)]
async fn client_should_fail_if_unable_to_receive_connection_id_from_server() {
let (mut t1, t2) = FramedTransport::pair(100);
// Spawn a task to perform the client connection so we don't deadlock while simulating the
// server actions on the other side
let task = tokio::spawn(async move {
Connection::client(t2.into_inner(), DummyAuthHandler)
.await
.unwrap()
});
// Perform first step of connection by establishing the codec
t1.server_handshake().await.unwrap();
// Receive a type that indicates a new connection
let ct = t1.read_frame_as::<ConnectType>().await.unwrap().unwrap();
assert!(
matches!(ct, ConnectType::Connect),
"Unexpected connect type: {ct:?}"
);
// Drop to cause id retrieval on client to fail
drop(t1);
// Client should fail
task.await.unwrap_err();
}
#[test(tokio::test)]
async fn client_should_fail_if_authentication_fails() {
let (mut t1, t2) = FramedTransport::pair(100);
// Spawn a task to perform the client connection so we don't deadlock while simulating the
// server actions on the other side
let task = tokio::spawn(async move {
Connection::client(t2.into_inner(), DummyAuthHandler)
.await
.unwrap()
});
// Perform first step of connection by establishing the codec
t1.server_handshake().await.unwrap();
// Receive a type that indicates a new connection
let ct = t1.read_frame_as::<ConnectType>().await.unwrap().unwrap();
assert!(
matches!(ct, ConnectType::Connect),
"Unexpected connect type: {ct:?}"
);
// Send a connection id as second step of connection
t1.write_frame_for(&rand::random::<ConnectionId>())
.await
.unwrap();
// Perform an authentication request that will fail on the client side, which will
// cause the client to drop and therefore this transport to fail in getting a response
t1.challenge(Challenge {
questions: Vec::new(),
options: Default::default(),
})
.await
.unwrap_err();
// Client should fail
task.await.unwrap_err();
}
#[test(tokio::test)]
async fn client_should_fail_if_unable_to_exchange_otp_for_reauthentication() {
let (mut t1, t2) = FramedTransport::pair(100);
// Spawn a task to perform the client connection so we don't deadlock while simulating the
// server actions on the other side
let task = tokio::spawn(async move {
Connection::client(t2.into_inner(), DummyAuthHandler)
.await
.unwrap()
});
// Perform first step of connection by establishing the codec
t1.server_handshake().await.unwrap();
// Receive a type that indicates a new connection
let ct = t1.read_frame_as::<ConnectType>().await.unwrap().unwrap();
assert!(
matches!(ct, ConnectType::Connect),
"Unexpected connect type: {ct:?}"
);
// Send a connection id as second step of connection
t1.write_frame_for(&rand::random::<ConnectionId>())
.await
.unwrap();
// Perform verification as third step using none method, which should always succeed
// without challenging
Verifier::none().verify(&mut t1).await.unwrap();
// Send garbage to fail the key exchange
t1.write_frame(Frame::new(b"invalid")).await.unwrap();
// Client should fail
task.await.unwrap_err();
}
#[test(tokio::test)]
async fn client_should_succeed_if_establishes_connection_with_server() {
let (mut t1, t2) = FramedTransport::pair(100);
// Spawn a task to perform the client connection so we don't deadlock while simulating the
// server actions on the other side
let task = tokio::spawn(async move {
Connection::client(t2.into_inner(), DummyAuthHandler)
.await
.unwrap()
});
// Perform first step of connection by establishing the codec
t1.server_handshake().await.unwrap();
// Receive a type that indicates a new connection
let ct = t1.read_frame_as::<ConnectType>().await.unwrap().unwrap();
assert!(
matches!(ct, ConnectType::Connect),
"Unexpected connect type: {ct:?}"
);
// Send a connection id as second step of connection
t1.write_frame_for(&rand::random::<ConnectionId>())
.await
.unwrap();
// Perform verification as third step using none method, which should always succeed
// without challenging
Verifier::none().verify(&mut t1).await.unwrap();
// Perform fourth step of key exchange for OTP
let otp = t1.exchange_keys().await.unwrap().into_heap_secret_key();
// Client should succeed and have an OTP that matches the server-side version
let client = task.await.unwrap();
assert_eq!(client.otp(), Some(&otp));
}
#[test(tokio::test)]
async fn server_should_fail_if_codec_handshake_fails() {
let (mut t1, t2) = FramedTransport::pair(100);
let verifier = Verifier::none();
let keychain = Keychain::new();
// Spawn a task to perform the server connection so we don't deadlock while simulating the
// client actions on the other side
let task = tokio::spawn(async move {
Connection::server(t2.into_inner(), &verifier, keychain)
.await
.unwrap()
});
// Send garbage to fail the handshake
t1.write_frame(Frame::new(b"invalid")).await.unwrap();
// Server should fail
task.await.unwrap_err();
}
#[test(tokio::test)]
async fn server_should_fail_if_unable_to_receive_connect_type() {
let (mut t1, t2) = FramedTransport::pair(100);
let verifier = Verifier::none();
let keychain = Keychain::new();
// Spawn a task to perform the server connection so we don't deadlock while simulating the
// client actions on the other side
let task = tokio::spawn(async move {
Connection::server(t2.into_inner(), &verifier, keychain)
.await
.unwrap()
});
// Perform first step of completing client-side of handshake
t1.client_handshake().await.unwrap();
// Send some garbage that is not the connection type
t1.write_frame(Frame::new(b"hello")).await.unwrap();
// Server should fail
task.await.unwrap_err();
}
#[test(tokio::test)]
async fn server_should_fail_if_unable_to_verify_new_client() {
let (mut t1, t2) = FramedTransport::pair(100);
let verifier = Verifier::static_key(HeapSecretKey::generate(32).unwrap());
let keychain = Keychain::new();
// Spawn a task to perform the server connection so we don't deadlock while simulating the
// client actions on the other side
let task = tokio::spawn(async move {
Connection::server(t2.into_inner(), &verifier, keychain)
.await
.unwrap()
});
// Perform first step of completing client-side of handshake
t1.client_handshake().await.unwrap();
// Send type to indicate a new connection
t1.write_frame_for(&ConnectType::Connect).await.unwrap();
// Receive the connection id
let _id = t1.read_frame_as::<ConnectionId>().await.unwrap().unwrap();
// Fail verification using the dummy handler that will fail when asked for a static key
t1.authenticate(DummyAuthHandler).await.unwrap_err();
// Drop the transport so we kill the server-side connection
// NOTE: If we don't drop here, the above authentication failure won't kill the server
drop(t1);
// Server should fail
task.await.unwrap_err();
}
#[test(tokio::test)]
async fn server_should_fail_if_unable_to_exchange_otp_for_reauthentication_with_new_client() {
let (mut t1, t2) = FramedTransport::pair(100);
let verifier = Verifier::none();
let keychain = Keychain::new();
// Spawn a task to perform the server connection so we don't deadlock while simulating the
// client actions on the other side
let task = tokio::spawn(async move {
Connection::server(t2.into_inner(), &verifier, keychain)
.await
.unwrap()
});
// Perform first step of completing client-side of handshake
t1.client_handshake().await.unwrap();
// Send type to indicate a new connection
t1.write_frame_for(&ConnectType::Connect).await.unwrap();
// Receive the connection id
let _id = t1.read_frame_as::<ConnectionId>().await.unwrap().unwrap();
// Pass verification using the dummy handler since our verifier supports no authentication
t1.authenticate(DummyAuthHandler).await.unwrap();
// Send some garbage to fail the exchange
t1.write_frame(Frame::new(b"hello")).await.unwrap();
// Server should fail
task.await.unwrap_err();
}
#[test(tokio::test)]
async fn server_should_fail_if_existing_client_id_is_invalid() {
let (mut t1, t2) = FramedTransport::pair(100);
let verifier = Verifier::none();
let keychain = Keychain::new();
// Spawn a task to perform the server connection so we don't deadlock while simulating the
// client actions on the other side
let task = tokio::spawn(async move {
Connection::server(t2.into_inner(), &verifier, keychain)
.await
.unwrap()
});
// Perform first step of completing client-side of handshake
t1.client_handshake().await.unwrap();
// Send type to indicate an existing connection, which should cause the server-side to fail
// because there is no matching id
t1.write_frame_for(&ConnectType::Reconnect {
id: 1234,
otp: HeapSecretKey::generate(32)
.unwrap()
.unprotected_into_bytes(),
})
.await
.unwrap();
// Server should fail
task.await.unwrap_err();
}
#[test(tokio::test)]
async fn server_should_fail_if_existing_client_otp_is_invalid() {
let (mut t1, t2) = FramedTransport::pair(100);
let verifier = Verifier::none();
let keychain = Keychain::new();
keychain
.insert(
1234.to_string(),
HeapSecretKey::generate(32).unwrap(),
oneshot::channel().1,
)
.await;
// Spawn a task to perform the server connection so we don't deadlock while simulating the
// client actions on the other side
let task = tokio::spawn(async move {
Connection::server(t2.into_inner(), &verifier, keychain)
.await
.unwrap()
});
// Perform first step of completing client-side of handshake
t1.client_handshake().await.unwrap();
// Send type to indicate an existing connection, which should cause the server-side to fail
// because the OTP is wrong for the given id
t1.write_frame_for(&ConnectType::Reconnect {
id: 1234,
otp: HeapSecretKey::generate(32)
.unwrap()
.unprotected_into_bytes(),
})
.await
.unwrap();
// Server should fail
task.await.unwrap_err();
}
#[test(tokio::test)]
async fn server_should_fail_if_unable_to_exchange_otp_for_reauthentication_with_existing_client(
) {
let (mut t1, t2) = FramedTransport::pair(100);
let verifier = Verifier::none();
let keychain = Keychain::new();
let key = HeapSecretKey::generate(32).unwrap();
keychain
.insert(1234.to_string(), key.clone(), oneshot::channel().1)
.await;
// Spawn a task to perform the server connection so we don't deadlock while simulating the
// client actions on the other side
let task = tokio::spawn(async move {
Connection::server(t2.into_inner(), &verifier, keychain)
.await
.unwrap()
});
// Perform first step of completing client-side of handshake
t1.client_handshake().await.unwrap();
// Send type to indicate an existing connection, which should cause the server-side to fail
// because the OTP is wrong for the given id
t1.write_frame_for(&ConnectType::Reconnect {
id: 1234,
otp: key.unprotected_into_bytes(),
})
.await
.unwrap();
// Send garbage to fail the otp exchange
t1.write_frame(Frame::new(b"hello")).await.unwrap();
// Server should fail
task.await.unwrap_err();
}
#[test(tokio::test)]
async fn server_should_fail_if_unable_to_synchronize_with_existing_client() {
let (mut t1, t2) = FramedTransport::pair(100);
let verifier = Verifier::none();
let keychain = Keychain::new();
let key = HeapSecretKey::generate(32).unwrap();
keychain
.insert(1234.to_string(), key.clone(), oneshot::channel().1)
.await;
// Spawn a task to perform the server connection so we don't deadlock while simulating the
// client actions on the other side
let task = tokio::spawn(async move {
Connection::server(t2.into_inner(), &verifier, keychain)
.await
.unwrap()
});
// Perform first step of completing client-side of handshake
t1.client_handshake().await.unwrap();
// Send type to indicate an existing connection, which should cause the server-side to fail
// because the OTP is wrong for the given id
t1.write_frame_for(&ConnectType::Reconnect {
id: 1234,
otp: key.unprotected_into_bytes(),
})
.await
.unwrap();
// Perform otp exchange
let _otp = t1.exchange_keys().await.unwrap();
// Send garbage to fail synchronization
t1.write_frame(b"hello").await.unwrap();
// Server should fail
task.await.unwrap_err();
}
#[test(tokio::test)]
async fn server_should_succeed_if_establishes_connection_with_new_client() {
let (mut t1, t2) = FramedTransport::pair(100);
let verifier = Verifier::none();
let keychain = Keychain::new();
// Spawn a task to perform the server connection so we don't deadlock while simulating the
// client actions on the other side
let task = tokio::spawn({
let keychain = keychain.clone();
async move {
Connection::server(t2.into_inner(), &verifier, keychain)
.await
.unwrap()
}
});
// Perform first step of completing client-side of handshake
t1.client_handshake().await.unwrap();
// Send type to indicate a new connection
t1.write_frame_for(&ConnectType::Connect).await.unwrap();
// Receive the connection id
let id = t1.read_frame_as::<ConnectionId>().await.unwrap().unwrap();
// Pass verification using the dummy handler since our verifier supports no authentication
t1.authenticate(DummyAuthHandler).await.unwrap();
// Perform otp exchange
let otp = t1.exchange_keys().await.unwrap();
// Server connection should be established, and have received some replayed frames
let server = task.await.unwrap();
// Validate the connection ids match
assert_eq!(server.id(), id);
// Validate the OTP was stored in our keychain
assert!(
keychain
.has_key(id.to_string(), otp.into_heap_secret_key())
.await,
"Missing OTP"
);
}
#[test(tokio::test)]
async fn server_should_succeed_if_establishes_connection_with_existing_client() {
let (mut t1, t2) = FramedTransport::pair(100);
let verifier = Verifier::none();
let keychain = Keychain::new();
let key = HeapSecretKey::generate(32).unwrap();
let id = 1234;
keychain
.insert(id.to_string(), key.clone(), {
// Create a custom backup we'll use to replay frames from the server-side
let mut backup = Backup::new();
backup.push_frame(Frame::new(b"hello"));
backup.push_frame(Frame::new(b"world"));
backup.increment_sent_cnt();
backup.increment_sent_cnt();
let (tx, rx) = oneshot::channel();
tx.send(backup).unwrap();
rx
})
.await;
// Spawn a task to perform the server connection so we don't deadlock while simulating the
// client actions on the other side
let task = tokio::spawn({
let keychain = keychain.clone();
async move {
Connection::server(t2.into_inner(), &verifier, keychain)
.await
.unwrap()
}
});
// Perform first step of completing client-side of handshake
t1.client_handshake().await.unwrap();
// Send type to indicate an existing connection, which should cause the server-side to fail
// because the OTP is wrong for the given id
t1.write_frame_for(&ConnectType::Reconnect {
id: 1234,
otp: key.unprotected_into_bytes(),
})
.await
.unwrap();
// Perform otp exchange
let otp = t1.exchange_keys().await.unwrap();
// Queue up some frames to send to the server
t1.backup.clear();
t1.backup.push_frame(Frame::new(b"foo"));
t1.backup.push_frame(Frame::new(b"bar"));
t1.backup.increment_sent_cnt();
t1.backup.increment_sent_cnt();
// Perform synchronization
t1.synchronize().await.unwrap();
// Verify that we received frames from the server
assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"hello");
assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"world");
// Server connection should be established, and have received some replayed frames
let mut server = task.await.unwrap();
assert_eq!(server.read_frame().await.unwrap().unwrap(), b"foo");
assert_eq!(server.read_frame().await.unwrap().unwrap(), b"bar");
// Validate the connection ids match
assert_eq!(server.id(), id);
// Validate the OTP was stored in our keychain
assert!(
keychain
.has_key(id.to_string(), otp.into_heap_secret_key())
.await,
"Missing OTP"
);
}
#[test(tokio::test)]
async fn client_server_new_connection_e2e_should_establish_connection() {
let (t1, t2) = InmemoryTransport::pair(100);
let verifier = Verifier::none();
let keychain = Keychain::new();
// Spawn a task to perform the server connection so we don't deadlock
let task = tokio::spawn(async move {
Connection::server(t2, &verifier, keychain)
.await
.expect("Failed to connect from server")
});
// Perform the client-side of the connection
let mut client = Connection::client(t1, DummyAuthHandler)
.await
.expect("Failed to connect from client");
let mut server = task.await.unwrap();
// Test out the connection
client.write_frame(Frame::new(b"hello")).await.unwrap();
assert_eq!(server.read_frame().await.unwrap().unwrap(), b"hello");
server.write_frame(Frame::new(b"goodbye")).await.unwrap();
assert_eq!(client.read_frame().await.unwrap().unwrap(), b"goodbye");
}
/// Helper utility to set up for a client reconnection
async fn setup_reconnect_scenario() -> (
Connection<InmemoryTransport>,
InmemoryTransport,
Arc<Verifier>,
Keychain<oneshot::Receiver<Backup>>,
) {
let (t1, t2) = InmemoryTransport::pair(100);
let verifier = Arc::new(Verifier::none());
let keychain = Keychain::new();
// Spawn a task to perform the server connection so we don't deadlock
let task = {
let verifier = Arc::clone(&verifier);
let keychain = keychain.clone();
tokio::spawn(async move {
Connection::server(t2, &verifier, keychain)
.await
.expect("Failed to connect from server")
})
};
// Perform the client-side of the connection
let mut client = Connection::client(t1, DummyAuthHandler)
.await
.expect("Failed to connect from client");
// Ensure the server is established and then drop it
let server = task.await.unwrap();
drop(server);
// Create a new inmemory transport and link it to the client
let mut t2 = InmemoryTransport::pair(100).0;
t2.link(client.mut_transport().as_mut_inner(), 100);
(client, t2, verifier, keychain)
}
#[test(tokio::test)]
async fn reconnect_should_fail_if_client_side_connection_handshake_fails() {
let (mut client, transport, _verifier, _keychain) = setup_reconnect_scenario().await;
let mut transport = FramedTransport::plain(transport);
// Spawn a task to perform the client reconnection so we don't deadlock
let task = tokio::spawn(async move { client.reconnect().await.unwrap() });
// Send garbage to fail handshake from server-side
transport.write_frame(b"hello").await.unwrap();
// Client should fail
task.await.unwrap_err();
}
#[test(tokio::test)]
async fn reconnect_should_fail_if_client_side_connection_unable_to_receive_new_connection_id() {
let (mut client, transport, _verifier, _keychain) = setup_reconnect_scenario().await;
let mut transport = FramedTransport::plain(transport);
// Spawn a task to perform the client reconnection so we don't deadlock
let task = tokio::spawn(async move { client.reconnect().await.unwrap() });
// Perform first step of completing server-side of handshake
transport.server_handshake().await.unwrap();
// Drop transport to cause client to fail in not receiving connection id
drop(transport);
// Client should fail
task.await.unwrap_err();
}
#[test(tokio::test)]
async fn reconnect_should_fail_if_client_side_connection_unable_to_exchange_otp_with_server() {
let (mut client, transport, _verifier, keychain) = setup_reconnect_scenario().await;
let mut transport = FramedTransport::plain(transport);
// Spawn a task to perform the client reconnection so we don't deadlock
let task = tokio::spawn(async move { client.reconnect().await.unwrap() });
// Perform first step of completing server-side of handshake
transport.server_handshake().await.unwrap();
// Receive reconnect data from client-side
let (id, otp) = match transport.read_frame_as::<ConnectType>().await {
Ok(Some(ConnectType::Reconnect { id, otp })) => (id, HeapSecretKey::from(otp)),
x => panic!("Unexpected result: {x:?}"),
};
// Verify the id and OTP matches the one stored into our keychain from the setup
assert!(
keychain.has_key(id.to_string(), otp).await,
"Wrong id or OTP"
);
// Send a new id back to the client connection
transport
.write_frame_for(&rand::random::<ConnectionId>())
.await
.unwrap();
// Send garbage to fail the key exchange for new OTP
transport.write_frame(Frame::new(b"hello")).await.unwrap();
// Client should fail
task.await.unwrap_err();
}
#[test(tokio::test)]
async fn reconnect_should_fail_if_client_side_connection_unable_to_synchronize_with_server() {
let (mut client, transport, _verifier, keychain) = setup_reconnect_scenario().await;
let mut transport = FramedTransport::plain(transport);
// Spawn a task to perform the client reconnection so we don't deadlock
let task = tokio::spawn(async move { client.reconnect().await.unwrap() });
// Perform first step of completing server-side of handshake
transport.server_handshake().await.unwrap();
// Receive reconnect data from client-side
let (id, otp) = match transport.read_frame_as::<ConnectType>().await {
Ok(Some(ConnectType::Reconnect { id, otp })) => (id, HeapSecretKey::from(otp)),
x => panic!("Unexpected result: {x:?}"),
};
// Verify the id and OTP matches the one stored into our keychain from the setup
assert!(
keychain.has_key(id.to_string(), otp).await,
"Wrong id or OTP"
);
// Send a new id back to the client connection
transport
.write_frame_for(&rand::random::<ConnectionId>())
.await
.unwrap();
// Send garbage to fail the key exchange for new OTP
transport.write_frame(Frame::new(b"hello")).await.unwrap();
// Client should fail
task.await.unwrap_err();
}
#[test(tokio::test)]
async fn reconnect_should_succeed_if_client_side_connection_fully_connects_and_synchronizes_with_server(
) {
let (mut client, transport, _verifier, keychain) = setup_reconnect_scenario().await;
let mut transport = FramedTransport::plain(transport);
// Copy client backup for verification later
let client_backup = client.transport().backup.clone();
// Spawn a task to perform the client reconnection so we don't deadlock
let task = tokio::spawn(async move {
client.reconnect().await.unwrap();
client
});
// Perform first step of completing server-side of handshake
transport.server_handshake().await.unwrap();
// Receive reconnect data from client-side
let (id, otp) = match transport.read_frame_as::<ConnectType>().await {
Ok(Some(ConnectType::Reconnect { id, otp })) => (id, HeapSecretKey::from(otp)),
x => panic!("Unexpected result: {x:?}"),
};
// Retrieve server backup
let backup = keychain
.remove_if_has_key(id.to_string(), otp)
.await
.into_ok()
.expect("Invalid id or OTP")
.await
.expect("Failed to retrieve backup");
// Perform key exchange
let otp = transport.exchange_keys().await.unwrap();
// Perform synchronization after restoring backup
transport.backup = backup;
transport.synchronize().await.unwrap();
// Client should succeed
let mut client = task.await.unwrap();
assert_eq!(client.otp(), Some(&otp.into_heap_secret_key()));
// Verify client backup sent/received count was not modified (stored frames may be
// truncated, though)
assert_eq!(
client.transport().backup.sent_cnt(),
client_backup.sent_cnt(),
"Client backup sent cnt altered"
);
assert_eq!(
client.transport().backup.received_cnt(),
client_backup.received_cnt(),
"Client backup received cnt altered"
);
// Verify that client can send a frame and receive a frame, and that there is
// nothing unexpected in the buffers on either side
client.write_frame(Frame::new(b"hello")).await.unwrap();
assert_eq!(transport.read_frame().await.unwrap().unwrap(), b"hello");
transport.write_frame(Frame::new(b"goodbye")).await.unwrap();
assert_eq!(client.read_frame().await.unwrap().unwrap(), b"goodbye");
}
#[test(tokio::test)]
async fn reconnect_should_fail_if_connection_is_server_side() {
let mut connection = Connection::Server {
id: rand::random(),
tx: oneshot::channel().0,
transport: FramedTransport::pair(100).0,
};
assert_eq!(
connection.reconnect().await.unwrap_err().kind(),
io::ErrorKind::Unsupported
);
}
#[test(tokio::test)]
async fn client_server_returning_connection_e2e_should_reestablish_connection() {
let (mut client, transport, verifier, keychain) = setup_reconnect_scenario().await;
// Spawn a task to perform the server reconnection so we don't deadlock
let task = tokio::spawn(async move {
Connection::server(transport, &verifier, keychain)
.await
.expect("Failed to connect from server")
});
// Reconnect and verify that the connection still works
client
.reconnect()
.await
.expect("Failed to reconnect from client");
// Ensure the server is established and then drop it
let mut server = task.await.unwrap();
// Test out the connection
client.write_frame(Frame::new(b"hello")).await.unwrap();
assert_eq!(server.read_frame().await.unwrap().unwrap(), b"hello");
server.write_frame(Frame::new(b"goodbye")).await.unwrap();
assert_eq!(client.read_frame().await.unwrap().unwrap(), b"goodbye");
}
}