1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
use std::io;
use std::time::Duration;
use log::*;
use strum::Display;
use tokio::sync::watch;
use tokio::task::JoinHandle;
use super::Reconnectable;
/// Represents a watcher over a [`ConnectionState`].
#[derive(Clone)]
pub struct ConnectionWatcher(pub(super) watch::Receiver<ConnectionState>);
impl ConnectionWatcher {
/// Returns next [`ConnectionState`] after a change is detected, or `None` if no more changes
/// will be detected.
pub async fn next(&mut self) -> Option<ConnectionState> {
self.0.changed().await.ok()?;
Some(self.last())
}
/// Returns true if the connection state has changed.
pub fn has_changed(&self) -> bool {
self.0.has_changed().ok().unwrap_or(false)
}
/// Returns the last [`ConnectionState`] observed.
pub fn last(&self) -> ConnectionState {
*self.0.borrow()
}
/// Spawns a new task that continually monitors for connection state changes and invokes the
/// function `f` whenever a new change is detected.
pub fn on_change<F>(&self, mut f: F) -> JoinHandle<()>
where
F: FnMut(ConnectionState) + Send + 'static,
{
let rx = self.0.clone();
tokio::spawn(async move {
let mut watcher = Self(rx);
while let Some(state) = watcher.next().await {
f(state);
}
})
}
}
/// Represents the state of a connection.
#[derive(Copy, Clone, Debug, Display, PartialEq, Eq)]
#[strum(serialize_all = "snake_case")]
pub enum ConnectionState {
/// Connection is not active, but currently going through reconnection process.
Reconnecting,
/// Connection is active.
Connected,
/// Connection is not active.
Disconnected,
}
impl ConnectionState {
/// Returns true if reconnecting.
pub fn is_reconnecting(&self) -> bool {
matches!(self, Self::Reconnecting)
}
/// Returns true if connected.
pub fn is_connected(&self) -> bool {
matches!(self, Self::Connected)
}
/// Returns true if disconnected.
pub fn is_disconnected(&self) -> bool {
matches!(self, Self::Disconnected)
}
}
/// Represents the strategy to apply when attempting to reconnect the client to the server.
#[derive(Clone, Debug)]
pub enum ReconnectStrategy {
/// A retry strategy that will fail immediately if a reconnect is attempted.
Fail,
/// A retry strategy driven by exponential back-off.
ExponentialBackoff {
/// Represents the initial time to wait between reconnect attempts.
base: Duration,
/// Factor to use when modifying the retry time, used as a multiplier.
factor: f64,
/// Represents the maximum duration to wait between attempts. None indicates no limit.
max_duration: Option<Duration>,
/// Represents the maximum attempts to retry before failing. None indicates no limit.
max_retries: Option<usize>,
/// Represents the maximum time to wait for a reconnect attempt. None indicates no limit.
timeout: Option<Duration>,
},
/// A retry strategy driven by the fibonacci series.
FibonacciBackoff {
/// Represents the initial time to wait between reconnect attempts.
base: Duration,
/// Represents the maximum duration to wait between attempts. None indicates no limit.
max_duration: Option<Duration>,
/// Represents the maximum attempts to retry before failing. None indicates no limit.
max_retries: Option<usize>,
/// Represents the maximum time to wait for a reconnect attempt. None indicates no limit.
timeout: Option<Duration>,
},
/// A retry strategy driven by a fixed interval.
FixedInterval {
/// Represents the time between reconnect attempts.
interval: Duration,
/// Represents the maximum attempts to retry before failing. None indicates no limit.
max_retries: Option<usize>,
/// Represents the maximum time to wait for a reconnect attempt. None indicates no limit.
timeout: Option<Duration>,
},
}
impl Default for ReconnectStrategy {
/// Creates a reconnect strategy that will immediately fail.
fn default() -> Self {
Self::Fail
}
}
impl ReconnectStrategy {
pub async fn reconnect<T: Reconnectable>(&mut self, reconnectable: &mut T) -> io::Result<()> {
// If our strategy is to immediately fail, do so
if self.is_fail() {
return Err(io::Error::from(io::ErrorKind::ConnectionAborted));
}
// Keep track of last sleep length for use in adjustment
let mut previous_sleep = None;
let mut current_sleep = self.initial_sleep_duration();
// Keep track of remaining retries
let mut retries_remaining = self.max_retries();
// Get timeout if strategy will employ one
let timeout = self.timeout();
// Get maximum allowed duration between attempts
let max_duration = self.max_duration();
// Continue trying to reconnect while we have more tries remaining, otherwise
// we will return the last error encountered
let mut result = Ok(());
while retries_remaining.is_none() || retries_remaining > Some(0) {
// Perform reconnect attempt
result = match timeout {
Some(timeout) => {
match tokio::time::timeout(timeout, reconnectable.reconnect()).await {
Ok(x) => x,
Err(x) => Err(x.into()),
}
}
None => reconnectable.reconnect().await,
};
// If reconnect was successful, we're done and we can exit
match &result {
Ok(()) => return Ok(()),
Err(x) => {
error!("Failed to reconnect: {x}");
}
}
// Decrement remaining retries if we have a limit
if let Some(remaining) = retries_remaining.as_mut() {
if *remaining > 0 {
*remaining -= 1;
}
}
// Sleep before making next attempt
tokio::time::sleep(current_sleep).await;
// Update our sleep duration
let next_sleep = self.adjust_sleep(previous_sleep, current_sleep);
previous_sleep = Some(current_sleep);
current_sleep = if let Some(duration) = max_duration {
std::cmp::min(next_sleep, duration)
} else {
next_sleep
};
}
result
}
/// Returns true if this strategy is the fail variant.
pub fn is_fail(&self) -> bool {
matches!(self, Self::Fail)
}
/// Returns true if this strategy is the exponential backoff variant.
pub fn is_exponential_backoff(&self) -> bool {
matches!(self, Self::ExponentialBackoff { .. })
}
/// Returns true if this strategy is the fibonacci backoff variant.
pub fn is_fibonacci_backoff(&self) -> bool {
matches!(self, Self::FibonacciBackoff { .. })
}
/// Returns true if this strategy is the fixed interval variant.
pub fn is_fixed_interval(&self) -> bool {
matches!(self, Self::FixedInterval { .. })
}
/// Returns the maximum duration between reconnect attempts, or None if there is no limit.
pub fn max_duration(&self) -> Option<Duration> {
match self {
ReconnectStrategy::Fail => None,
ReconnectStrategy::ExponentialBackoff { max_duration, .. } => *max_duration,
ReconnectStrategy::FibonacciBackoff { max_duration, .. } => *max_duration,
ReconnectStrategy::FixedInterval { .. } => None,
}
}
/// Returns the maximum reconnect attempts the strategy will perform, or None if will attempt
/// forever.
pub fn max_retries(&self) -> Option<usize> {
match self {
ReconnectStrategy::Fail => None,
ReconnectStrategy::ExponentialBackoff { max_retries, .. } => *max_retries,
ReconnectStrategy::FibonacciBackoff { max_retries, .. } => *max_retries,
ReconnectStrategy::FixedInterval { max_retries, .. } => *max_retries,
}
}
/// Returns the timeout per reconnect attempt that is associated with the strategy.
pub fn timeout(&self) -> Option<Duration> {
match self {
ReconnectStrategy::Fail => None,
ReconnectStrategy::ExponentialBackoff { timeout, .. } => *timeout,
ReconnectStrategy::FibonacciBackoff { timeout, .. } => *timeout,
ReconnectStrategy::FixedInterval { timeout, .. } => *timeout,
}
}
/// Returns the initial duration to sleep.
fn initial_sleep_duration(&self) -> Duration {
match self {
ReconnectStrategy::Fail => Duration::new(0, 0),
ReconnectStrategy::ExponentialBackoff { base, .. } => *base,
ReconnectStrategy::FibonacciBackoff { base, .. } => *base,
ReconnectStrategy::FixedInterval { interval, .. } => *interval,
}
}
/// Adjusts next sleep duration based on the strategy.
fn adjust_sleep(&self, prev: Option<Duration>, curr: Duration) -> Duration {
match self {
ReconnectStrategy::Fail => Duration::new(0, 0),
ReconnectStrategy::ExponentialBackoff { factor, .. } => {
let next_millis = (curr.as_millis() as f64) * factor;
Duration::from_millis(if next_millis > (std::u64::MAX as f64) {
std::u64::MAX
} else {
next_millis as u64
})
}
ReconnectStrategy::FibonacciBackoff { .. } => {
let prev = prev.unwrap_or_else(|| Duration::new(0, 0));
prev.checked_add(curr).unwrap_or(Duration::MAX)
}
ReconnectStrategy::FixedInterval { .. } => curr,
}
}
}