1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
use super::{InmemoryTransport, Interest, Ready, Reconnectable, Transport};
use crate::common::utils;
use async_trait::async_trait;
use bytes::{Buf, BytesMut};
use log::*;
use serde::{de::DeserializeOwned, Deserialize, Serialize};
use std::{fmt, future::Future, io, time::Duration};

mod backup;
mod codec;
mod exchange;
mod frame;
mod handshake;

pub use backup::*;
pub use codec::*;
pub use exchange::*;
pub use frame::*;
pub use handshake::*;

/// Size of the read buffer when reading bytes to construct a frame
const READ_BUF_SIZE: usize = 8 * 1024;

/// Duration to wait after WouldBlock received during looping operations like `read_frame`
const SLEEP_DURATION: Duration = Duration::from_millis(1);

/// Represents a wrapper around a [`Transport`] that reads and writes using frames defined by a
/// [`Codec`].
///
/// [`try_read`]: Transport::try_read
#[derive(Clone)]
pub struct FramedTransport<T> {
    /// Inner transport wrapped to support frames of data
    inner: T,

    /// Codec used to encoding outgoing bytes and decode incoming bytes
    codec: BoxedCodec,

    /// Bytes in queue to be read
    incoming: BytesMut,

    /// Bytes in queue to be written
    outgoing: BytesMut,

    /// Stores outgoing frames in case of transmission issues
    pub backup: Backup,
}

impl<T> FramedTransport<T> {
    pub fn new(inner: T, codec: BoxedCodec) -> Self {
        Self {
            inner,
            codec,
            incoming: BytesMut::with_capacity(READ_BUF_SIZE * 2),
            outgoing: BytesMut::with_capacity(READ_BUF_SIZE * 2),
            backup: Backup::new(),
        }
    }

    /// Creates a new [`FramedTransport`] using the [`PlainCodec`]
    pub fn plain(inner: T) -> Self {
        Self::new(inner, Box::new(PlainCodec::new()))
    }

    /// Replaces the current codec with the provided codec. Note that any bytes in the incoming or
    /// outgoing buffers will remain in the transport, meaning that this can cause corruption if
    /// the bytes in the buffers do not match the new codec.
    ///
    /// For safety, use [`clear`] to wipe the buffers before further use.
    ///
    /// [`clear`]: FramedTransport::clear
    pub fn set_codec(&mut self, codec: BoxedCodec) {
        self.codec = codec;
    }

    /// Returns a reference to the codec used by the transport.
    ///
    /// ### Note
    ///
    /// Be careful when accessing the codec to avoid corrupting it through unexpected modifications
    /// as this will place the transport in an undefined state.
    pub fn codec(&self) -> &dyn Codec {
        self.codec.as_ref()
    }

    /// Returns a mutable reference to the codec used by the transport.
    ///
    /// ### Note
    ///
    /// Be careful when accessing the codec to avoid corrupting it through unexpected modifications
    /// as this will place the transport in an undefined state.
    pub fn mut_codec(&mut self) -> &mut dyn Codec {
        self.codec.as_mut()
    }

    /// Clears the internal transport buffers.
    pub fn clear(&mut self) {
        self.incoming.clear();
        self.outgoing.clear();
    }

    /// Returns a reference to the inner value this transport wraps.
    pub fn as_inner(&self) -> &T {
        &self.inner
    }

    /// Returns a mutable reference to the inner value this transport wraps.
    pub fn as_mut_inner(&mut self) -> &mut T {
        &mut self.inner
    }

    /// Consumes this transport, returning the inner value that it wraps.
    pub fn into_inner(self) -> T {
        self.inner
    }
}

impl<T> fmt::Debug for FramedTransport<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("FramedTransport")
            .field("incoming", &self.incoming)
            .field("outgoing", &self.outgoing)
            .field("backup", &self.backup)
            .finish()
    }
}

impl<T: Transport + 'static> FramedTransport<T> {
    /// Converts this instance to a [`FramedTransport`] whose inner [`Transport`] is [`Box`]ed.
    pub fn into_boxed(self) -> FramedTransport<Box<dyn Transport>> {
        FramedTransport {
            inner: Box::new(self.inner),
            codec: self.codec,
            incoming: self.incoming,
            outgoing: self.outgoing,
            backup: self.backup,
        }
    }
}

impl<T: Transport> FramedTransport<T> {
    /// Waits for the transport to be ready based on the given interest, returning the ready status
    pub async fn ready(&self, interest: Interest) -> io::Result<Ready> {
        // If interest includes reading, we check if we already have a frame in our queue,
        // as there can be a scenario where a frame was received and then the connection
        // was closed, and we still want to be able to read the next frame is if it is
        // available in the connection.
        let ready = if interest.is_readable() && Frame::available(&self.incoming) {
            Ready::READABLE
        } else {
            Ready::EMPTY
        };

        // If we know that we are readable and not checking for write status, we can short-circuit
        // to avoid an async call by returning immediately that we are readable
        if !interest.is_writable() && ready.is_readable() {
            return Ok(ready);
        }

        // Otherwise, we need to check the status using the underlying transport and merge it with
        // our current understanding based on internal state
        Transport::ready(&self.inner, interest)
            .await
            .map(|r| r | ready)
    }

    /// Waits for the transport to be readable to follow up with [`try_read_frame`].
    ///
    /// [`try_read_frame`]: FramedTransport::try_read_frame
    pub async fn readable(&self) -> io::Result<()> {
        let _ = self.ready(Interest::READABLE).await?;
        Ok(())
    }

    /// Waits for the transport to be writeable to follow up with [`try_write_frame`].
    ///
    /// [`try_write_frame`]: FramedTransport::try_write_frame
    pub async fn writeable(&self) -> io::Result<()> {
        let _ = self.ready(Interest::WRITABLE).await?;
        Ok(())
    }

    /// Waits for the transport to be readable or writeable, returning the [`Ready`] status.
    pub async fn readable_or_writeable(&self) -> io::Result<Ready> {
        self.ready(Interest::READABLE | Interest::WRITABLE).await
    }

    /// Attempts to flush any remaining bytes in the outgoing queue, returning the total bytes
    /// written as a result of the flush. Note that a return of 0 bytes does not indicate that the
    /// underlying transport has closed, but rather that no bytes were flushed such as when the
    /// outgoing queue is empty.
    ///
    /// This is accomplished by continually calling the inner transport's `try_write`. If 0 is
    /// returned from a call to `try_write`, this will fail with [`ErrorKind::WriteZero`].
    ///
    /// This call may return an error with [`ErrorKind::WouldBlock`] in the case that the transport
    /// is not ready to write data.
    ///
    /// [`ErrorKind::WouldBlock`]: io::ErrorKind::WouldBlock
    pub fn try_flush(&mut self) -> io::Result<usize> {
        let mut bytes_written = 0;

        // Continue to send from the outgoing buffer until we either finish or fail
        while !self.outgoing.is_empty() {
            match self.inner.try_write(self.outgoing.as_ref()) {
                // Getting 0 bytes on write indicates the channel has closed
                Ok(0) => return Err(io::Error::from(io::ErrorKind::WriteZero)),

                // Successful write will advance the outgoing buffer
                Ok(n) => {
                    self.outgoing.advance(n);
                    bytes_written += n;
                }

                // Any error (including WouldBlock) will get bubbled up
                Err(x) => return Err(x),
            }
        }

        Ok(bytes_written)
    }

    /// Flushes all buffered, outgoing bytes using repeated calls to [`try_flush`].
    ///
    /// [`try_flush`]: FramedTransport::try_flush
    pub async fn flush(&mut self) -> io::Result<()> {
        while !self.outgoing.is_empty() {
            self.writeable().await?;
            match self.try_flush() {
                Err(x) if x.kind() == io::ErrorKind::WouldBlock => {
                    // NOTE: We sleep for a little bit before trying again to avoid pegging CPU
                    tokio::time::sleep(SLEEP_DURATION).await
                }
                Err(x) => return Err(x),
                Ok(_) => return Ok(()),
            }
        }

        Ok(())
    }

    /// Reads a frame of bytes by using the [`Codec`] tied to this transport. Returns
    /// `Ok(Some(frame))` upon reading a frame, or `Ok(None)` if the underlying transport has
    /// closed.
    ///
    /// This call may return an error with [`ErrorKind::WouldBlock`] in the case that the transport
    /// is not ready to read data or has not received a full frame before waiting.
    ///
    /// [`ErrorKind::WouldBlock`]: io::ErrorKind::WouldBlock
    pub fn try_read_frame(&mut self) -> io::Result<Option<OwnedFrame>> {
        // Attempt to read a frame, returning the decoded frame if we get one, returning any error
        // that is encountered from reading frames or failing to decode, or otherwise doing nothing
        // and continuing forward.
        macro_rules! read_next_frame {
            () => {{
                match Frame::read(&mut self.incoming) {
                    Ok(None) => (),
                    Ok(Some(frame)) => {
                        self.backup.increment_received_cnt();
                        return Ok(Some(self.codec.decode(frame)?.into_owned()));
                    }
                    Err(x) => return Err(x),
                }
            }};
        }

        // If we have data remaining in the buffer, we first try to parse it in case we received
        // multiple frames from a previous call.
        //
        // NOTE: This exists to avoid the situation where there is a valid frame remaining in the
        //       incoming buffer, but it is never evaluated because a call to `try_read` returns
        //       `WouldBlock`, 0 bytes, or some other error.
        if !self.incoming.is_empty() {
            read_next_frame!();
        }

        // Continually read bytes into the incoming queue and then attempt to tease out a frame
        let mut buf = [0; READ_BUF_SIZE];

        loop {
            match self.inner.try_read(&mut buf) {
                // Getting 0 bytes on read indicates the channel has closed. If we were still
                // expecting more bytes for our frame, then this is an error, otherwise if we
                // have nothing remaining if our queue then this is an expected end and we
                // return None
                Ok(0) if self.incoming.is_empty() => return Ok(None),
                Ok(0) => return Err(io::Error::from(io::ErrorKind::UnexpectedEof)),

                // Got some additional bytes, which we will add to our queue and then attempt to
                // decode into a frame
                Ok(n) => {
                    self.incoming.extend_from_slice(&buf[..n]);
                    read_next_frame!();
                }

                // Any error (including WouldBlock) will get bubbled up
                Err(x) => return Err(x),
            }
        }
    }

    /// Reads a frame using [`try_read_frame`] and then deserializes the bytes into `D`.
    ///
    /// [`try_read_frame`]: FramedTransport::try_read_frame
    pub fn try_read_frame_as<D: DeserializeOwned>(&mut self) -> io::Result<Option<D>> {
        match self.try_read_frame() {
            Ok(Some(frame)) => Ok(Some(utils::deserialize_from_slice(frame.as_item())?)),
            Ok(None) => Ok(None),
            Err(x) => Err(x),
        }
    }

    /// Continues to invoke [`try_read_frame`] until a frame is successfully read, an error is
    /// encountered that is not [`ErrorKind::WouldBlock`], or the underlying transport has closed.
    ///
    /// [`try_read_frame`]: FramedTransport::try_read_frame
    /// [`ErrorKind::WouldBlock`]: io::ErrorKind::WouldBlock
    pub async fn read_frame(&mut self) -> io::Result<Option<OwnedFrame>> {
        loop {
            self.readable().await?;

            match self.try_read_frame() {
                Err(x) if x.kind() == io::ErrorKind::WouldBlock => {
                    // NOTE: We sleep for a little bit before trying again to avoid pegging CPU
                    tokio::time::sleep(SLEEP_DURATION).await
                }
                x => return x,
            }
        }
    }

    /// Reads a frame using [`read_frame`] and then deserializes the bytes into `D`.
    ///
    /// [`read_frame`]: FramedTransport::read_frame
    pub async fn read_frame_as<D: DeserializeOwned>(&mut self) -> io::Result<Option<D>> {
        match self.read_frame().await {
            Ok(Some(frame)) => Ok(Some(utils::deserialize_from_slice(frame.as_item())?)),
            Ok(None) => Ok(None),
            Err(x) => Err(x),
        }
    }

    /// Writes a `frame` of bytes by using the [`Codec`] tied to this transport.
    ///
    /// This is accomplished by continually calling the inner transport's `try_write`. If 0 is
    /// returned from a call to `try_write`, this will fail with [`ErrorKind::WriteZero`].
    ///
    /// This call may return an error with [`ErrorKind::WouldBlock`] in the case that the transport
    /// is not ready to write data or has not written the entire frame before waiting.
    ///
    /// [`ErrorKind::WriteZero`]: io::ErrorKind::WriteZero
    /// [`ErrorKind::WouldBlock`]: io::ErrorKind::WouldBlock
    pub fn try_write_frame<'a, F>(&mut self, frame: F) -> io::Result<()>
    where
        F: TryInto<Frame<'a>>,
        F::Error: Into<Box<dyn std::error::Error + Send + Sync>>,
    {
        // Grab the frame to send
        let frame = frame
            .try_into()
            .map_err(|x| io::Error::new(io::ErrorKind::InvalidInput, x))?;

        // Encode the frame and store it in our outgoing queue
        self.codec
            .encode(frame.as_borrowed())?
            .write(&mut self.outgoing)?;

        // Once the frame enters our queue, we count it as written, even if it isn't fully flushed
        self.backup.increment_sent_cnt();

        // Then we store the raw frame (non-encoded) for the future in case we need to retry
        // sending it later (possibly with a different codec)
        self.backup.push_frame(frame);

        // Attempt to write everything in our queue
        self.try_flush()?;

        Ok(())
    }

    /// Serializes `value` into bytes and passes them to [`try_write_frame`].
    ///
    /// [`try_write_frame`]: FramedTransport::try_write_frame
    pub fn try_write_frame_for<D: Serialize>(&mut self, value: &D) -> io::Result<()> {
        let data = utils::serialize_to_vec(value)?;
        self.try_write_frame(data)
    }

    /// Invokes [`try_write_frame`] followed by a continuous calls to [`try_flush`] until a frame
    /// is successfully written, an error is encountered that is not [`ErrorKind::WouldBlock`], or
    /// the underlying transport has closed.
    ///
    /// [`try_write_frame`]: FramedTransport::try_write_frame
    /// [`try_flush`]: FramedTransport::try_flush
    /// [`ErrorKind::WouldBlock`]: io::ErrorKind::WouldBlock
    pub async fn write_frame<'a, F>(&mut self, frame: F) -> io::Result<()>
    where
        F: TryInto<Frame<'a>>,
        F::Error: Into<Box<dyn std::error::Error + Send + Sync>>,
    {
        self.writeable().await?;

        match self.try_write_frame(frame) {
            // Would block, so continually try to flush until good to go
            Err(x) if x.kind() == io::ErrorKind::WouldBlock => loop {
                self.writeable().await?;
                match self.try_flush() {
                    Err(x) if x.kind() == io::ErrorKind::WouldBlock => {
                        // NOTE: We sleep for a little bit before trying again to avoid pegging CPU
                        tokio::time::sleep(SLEEP_DURATION).await
                    }
                    Err(x) => return Err(x),
                    Ok(_) => return Ok(()),
                }
            },

            // Already fully succeeded or failed
            x => x,
        }
    }

    /// Serializes `value` into bytes and passes them to [`write_frame`].
    ///
    /// [`write_frame`]: FramedTransport::write_frame
    pub async fn write_frame_for<D: Serialize>(&mut self, value: &D) -> io::Result<()> {
        let data = utils::serialize_to_vec(value)?;
        self.write_frame(data).await
    }

    /// Executes the async function while the [`Backup`] of this transport is frozen.
    pub async fn do_frozen<F, X>(&mut self, mut f: F) -> io::Result<()>
    where
        F: FnMut(&mut Self) -> X,
        X: Future<Output = io::Result<()>>,
    {
        let is_frozen = self.backup.is_frozen();
        self.backup.freeze();
        let result = f(self).await;
        self.backup.set_frozen(is_frozen);
        result
    }

    /// Places the transport in **synchronize mode** where it communicates with the other side how
    /// many frames have been sent and received. From there, any frames not received by the other
    /// side are sent again and then this transport waits for any missing frames that it did not
    /// receive from the other side.
    ///
    /// ### Note
    ///
    /// This will clear the internal incoming and outgoing buffers, so any frame that was in
    /// transit in either direction will be dropped.
    pub async fn synchronize(&mut self) -> io::Result<()> {
        async fn synchronize_impl<T: Transport>(
            this: &mut FramedTransport<T>,
            backup: &mut Backup,
        ) -> io::Result<()> {
            type Stats = (u64, u64, u64);

            // Stats in the form of (sent, received, available)
            let sent_cnt: u64 = backup.sent_cnt();
            let received_cnt: u64 = backup.received_cnt();
            let available_cnt: u64 = backup
                .frame_cnt()
                .try_into()
                .expect("Cannot case usize to u64");

            // Clear our internal buffers
            this.clear();

            // Communicate frame counters with other side so we can determine how many frames to send
            // and how many to receive. Wait until we get the stats from the other side, and then send
            // over any missing frames.
            trace!(
                "Stats: sent = {sent_cnt}, received = {received_cnt}, available = {available_cnt}"
            );
            this.write_frame_for(&(sent_cnt, received_cnt, available_cnt))
                .await?;
            let (other_sent_cnt, other_received_cnt, other_available_cnt) =
                this.read_frame_as::<Stats>().await?.ok_or_else(|| {
                    io::Error::new(
                        io::ErrorKind::UnexpectedEof,
                        "Transport terminated before getting replay stats",
                    )
                })?;
            trace!("Other stats: sent = {other_sent_cnt}, received = {other_received_cnt}, available = {other_available_cnt}");

            // Determine how many frames we need to resend. This will either be (sent - received) or
            // available frames, whichever is smaller.
            let resend_cnt = std::cmp::min(
                if sent_cnt > other_received_cnt {
                    sent_cnt - other_received_cnt
                } else {
                    0
                },
                available_cnt,
            );

            // Determine how many frames we expect to receive. This will either be (received - sent) or
            // available frames, whichever is smaller.
            let expected_cnt = std::cmp::min(
                if received_cnt < other_sent_cnt {
                    other_sent_cnt - received_cnt
                } else {
                    0
                },
                other_available_cnt,
            );

            // Send all missing frames, removing any frames that we know have been received
            trace!("Reducing internal replay frames to {resend_cnt}");
            backup.truncate_front(resend_cnt.try_into().expect("Cannot cast usize to u64"));

            debug!("Sending {resend_cnt} frames");
            for frame in backup.frames() {
                this.try_write_frame(frame.as_borrowed())?;
            }
            this.flush().await?;

            // Receive all expected frames, placing their contents into our incoming queue
            //
            // NOTE: We do not increment our counter as this is done during `try_read_frame`, even
            //       when the frame comes from our internal queue. To avoid duplicating the increment,
            //       we do not increment the counter here.
            debug!("Waiting for {expected_cnt} frames");
            for i in 0..expected_cnt {
                let frame = this.read_frame().await?.ok_or_else(|| {
                    io::Error::new(
                        io::ErrorKind::UnexpectedEof,
                        format!(
                            "Transport terminated before getting frame {}/{expected_cnt}",
                            i + 1
                        ),
                    )
                })?;

                // Encode our frame and write it to be queued in our incoming data
                // NOTE: We have to do encoding here as incoming bytes are expected to be encoded
                this.codec.encode(frame)?.write(&mut this.incoming)?;
            }

            // Catch up our read count as we can have the case where the other side has a higher
            // count than frames sent if some frames were fully dropped due to size limits
            if backup.received_cnt() != other_sent_cnt {
                warn!(
                    "Backup received count ({}) != other sent count ({}), so resetting to match",
                    backup.received_cnt(),
                    other_sent_cnt
                );
                backup.set_received_cnt(other_sent_cnt);
            }

            Ok(())
        }

        // Swap out our backup so we don't mutate it from synchronization efforts
        let mut backup = std::mem::take(&mut self.backup);

        // Perform our operation, but don't return immediately so we can restore our backup
        let result = synchronize_impl(self, &mut backup).await;

        // Reset our backup to the real version
        self.backup = backup;

        result
    }

    /// Shorthand for creating a [`FramedTransport`] with a [`PlainCodec`] and then immediately
    /// performing a [`client_handshake`], returning the updated [`FramedTransport`] on success.
    ///
    /// [`client_handshake`]: FramedTransport::client_handshake
    #[inline]
    pub async fn from_client_handshake(transport: T) -> io::Result<Self> {
        let mut transport = Self::plain(transport);
        transport.client_handshake().await?;
        Ok(transport)
    }

    /// Perform the client-side of a handshake. See [`handshake`] for more details.
    ///
    /// [`handshake`]: FramedTransport::handshake
    pub async fn client_handshake(&mut self) -> io::Result<()> {
        self.handshake(Handshake::client()).await
    }
    /// Shorthand for creating a [`FramedTransport`] with a [`PlainCodec`] and then immediately
    /// performing a [`server_handshake`], returning the updated [`FramedTransport`] on success.
    ///
    /// [`client_handshake`]: FramedTransport::client_handshake
    #[inline]
    pub async fn from_server_handshake(transport: T) -> io::Result<Self> {
        let mut transport = Self::plain(transport);
        transport.server_handshake().await?;
        Ok(transport)
    }

    /// Perform the server-side of a handshake. See [`handshake`] for more details.
    ///
    /// [`handshake`]: FramedTransport::handshake
    pub async fn server_handshake(&mut self) -> io::Result<()> {
        self.handshake(Handshake::server()).await
    }

    /// Performs a handshake in order to establish a new codec to use between this transport and
    /// the other side. The parameter `handshake` defines how the transport will handle the
    /// handshake with `Client` being used to pick the compression and encryption used while
    /// `Server` defines what the choices are for compression and encryption.
    ///
    /// This will reset the framed transport's codec to [`PlainCodec`] in order to communicate
    /// which compression and encryption to use. Upon selecting an encryption type, a shared secret
    /// key will be derived on both sides and used to establish the [`EncryptionCodec`], which in
    /// combination with the [`CompressionCodec`] (if any) will replace this transport's codec.
    ///
    /// ### Client
    ///
    /// 1. Wait for options from server
    /// 2. Send to server a compression and encryption choice
    /// 3. Configure framed transport using selected choices
    /// 4. Invoke on_handshake function
    ///
    /// ### Server
    ///
    /// 1. Send options to client
    /// 2. Receive choices from client
    /// 3. Configure framed transport using client's choices
    /// 4. Invoke on_handshake function
    ///
    /// ### Failure
    ///
    /// The handshake will fail in several cases:
    ///
    /// * If any frame during the handshake fails to be serialized
    /// * If any unexpected frame is received during the handshake
    /// * If using encryption and unable to derive a shared secret key
    ///
    /// If a failure happens, the codec will be reset to what it was prior to the handshake
    /// request, and all internal buffers will be cleared to avoid corruption.
    ///
    pub async fn handshake(&mut self, handshake: Handshake) -> io::Result<()> {
        // Place transport in plain text communication mode for start of handshake, and clear any
        // data that is lingering within internal buffers
        //
        // NOTE: We grab the old codec in case we encounter an error and need to reset it
        let old_codec = std::mem::replace(&mut self.codec, Box::new(PlainCodec::new()));
        self.clear();

        // Swap out our backup so we don't mutate it from synchronization efforts
        let backup = std::mem::take(&mut self.backup);

        // Transform the transport's codec to abide by the choice. In the case of an error, we
        // reset the codec back to what it was prior to attempting the handshake and clear the
        // internal buffers as they may be corrupt.
        match self.handshake_impl(handshake).await {
            Ok(codec) => {
                self.set_codec(codec);
                self.backup = backup;
                Ok(())
            }
            Err(x) => {
                self.set_codec(old_codec);
                self.clear();
                self.backup = backup;
                Err(x)
            }
        }
    }

    async fn handshake_impl(&mut self, handshake: Handshake) -> io::Result<BoxedCodec> {
        #[derive(Debug, Serialize, Deserialize)]
        struct Choice {
            compression_level: Option<CompressionLevel>,
            compression_type: Option<CompressionType>,
            encryption_type: Option<EncryptionType>,
        }

        #[derive(Debug, Serialize, Deserialize)]
        struct Options {
            compression_types: Vec<CompressionType>,
            encryption_types: Vec<EncryptionType>,
        }

        // Define a label to distinguish log output for client and server
        let log_label = if handshake.is_client() {
            "Handshake | Client"
        } else {
            "Handshake | Server"
        };

        // Determine compression and encryption to apply to framed transport
        let choice = match handshake {
            Handshake::Client {
                preferred_compression_type,
                preferred_compression_level,
                preferred_encryption_type,
            } => {
                // Receive options from the server and pick one
                debug!("[{log_label}] Waiting on options");
                let options = self.read_frame_as::<Options>().await?.ok_or_else(|| {
                    io::Error::new(
                        io::ErrorKind::UnexpectedEof,
                        "Transport closed early while waiting for options",
                    )
                })?;

                // Choose a compression and encryption option from the options
                debug!("[{log_label}] Selecting from options: {options:#?}");
                let choice = Choice {
                    // Use preferred compression if available, otherwise default to no compression
                    // to avoid choosing something poor
                    compression_type: preferred_compression_type
                        .filter(|ty| options.compression_types.contains(ty)),

                    // Use preferred compression level, otherwise allowing the server to pick
                    compression_level: preferred_compression_level,

                    // Use preferred encryption, otherwise pick first non-unknown encryption type
                    // that is available instead
                    encryption_type: preferred_encryption_type
                        .filter(|ty| options.encryption_types.contains(ty))
                        .or_else(|| {
                            options
                                .encryption_types
                                .iter()
                                .find(|ty| !ty.is_unknown())
                                .copied()
                        }),
                };

                // Report back to the server the choice
                debug!("[{log_label}] Reporting choice: {choice:#?}");
                self.write_frame_for(&choice).await?;

                choice
            }
            Handshake::Server {
                compression_types,
                encryption_types,
            } => {
                let options = Options {
                    compression_types: compression_types.to_vec(),
                    encryption_types: encryption_types.to_vec(),
                };

                // Send options to the client
                debug!("[{log_label}] Sending options: {options:#?}");
                self.write_frame_for(&options).await?;

                // Get client's response with selected compression and encryption
                debug!("[{log_label}] Waiting on choice");
                self.read_frame_as::<Choice>().await?.ok_or_else(|| {
                    io::Error::new(
                        io::ErrorKind::UnexpectedEof,
                        "Transport closed early while waiting for choice",
                    )
                })?
            }
        };

        debug!("[{log_label}] Building compression & encryption codecs based on {choice:#?}");
        let compression_level = choice.compression_level.unwrap_or_default();

        // Acquire a codec for the compression type
        let compression_codec = choice
            .compression_type
            .map(|ty| ty.new_codec(compression_level))
            .transpose()?;

        // In the case that we are using encryption, we derive a shared secret key to use with the
        // encryption type
        let encryption_codec = match choice.encryption_type {
            // Fail early if we got an unknown encryption type
            Some(EncryptionType::Unknown) => {
                return Err(io::Error::new(
                    io::ErrorKind::InvalidInput,
                    "Unknown compression type",
                ))
            }
            Some(ty) => {
                let key = self.exchange_keys_impl(log_label).await?;
                Some(ty.new_codec(key.unprotected_as_bytes())?)
            }
            None => None,
        };

        // Bundle our compression and encryption codecs into a single, chained codec
        trace!("[{log_label}] Bundling codecs");
        let codec: BoxedCodec = match (compression_codec, encryption_codec) {
            // If we have both encryption and compression, do the encryption first and then
            // compress in order to get smallest result
            (Some(c), Some(e)) => Box::new(ChainCodec::new(e, c)),

            // If we just have compression, pass along the compression codec
            (Some(c), None) => Box::new(c),

            // If we just have encryption, pass along the encryption codec
            (None, Some(e)) => Box::new(e),

            // If we have neither compression nor encryption, use a plaintext codec
            (None, None) => Box::new(PlainCodec::new()),
        };

        Ok(codec)
    }

    /// Places the transport into key-exchange mode where it attempts to derive a shared secret key
    /// with the other transport.
    pub async fn exchange_keys(&mut self) -> io::Result<SecretKey32> {
        self.exchange_keys_impl("").await
    }

    async fn exchange_keys_impl(&mut self, label: &str) -> io::Result<SecretKey32> {
        let log_label = if label.is_empty() {
            String::new()
        } else {
            format!("[{label}] ")
        };

        #[derive(Serialize, Deserialize)]
        struct KeyExchangeData {
            /// Bytes of the public key
            #[serde(with = "serde_bytes")]
            public_key: PublicKeyBytes,

            /// Randomly generated salt
            #[serde(with = "serde_bytes")]
            salt: Salt,
        }

        debug!("{log_label}Exchanging public key and salt");
        let exchange = KeyExchange::default();
        self.write_frame_for(&KeyExchangeData {
            public_key: exchange.pk_bytes(),
            salt: *exchange.salt(),
        })
        .await?;

        // TODO: This key only works because it happens to be 32 bytes and our encryption
        //       also wants a 32-byte key. Once we introduce new encryption algorithms that
        //       are not using 32-byte keys, the key exchange will need to support deriving
        //       other length keys.
        trace!("{log_label}Waiting on public key and salt from other side");
        let data = self
            .read_frame_as::<KeyExchangeData>()
            .await?
            .ok_or_else(|| {
                io::Error::new(
                    io::ErrorKind::UnexpectedEof,
                    "Transport closed early while waiting for key data",
                )
            })?;

        trace!("{log_label}Deriving shared secret key");
        let key = exchange.derive_shared_secret(data.public_key, data.salt)?;
        Ok(key)
    }
}

#[async_trait]
impl<T> Reconnectable for FramedTransport<T>
where
    T: Transport,
{
    async fn reconnect(&mut self) -> io::Result<()> {
        Reconnectable::reconnect(&mut self.inner).await
    }
}

impl FramedTransport<InmemoryTransport> {
    /// Produces a pair of inmemory transports that are connected to each other using a
    /// [`PlainCodec`].
    ///
    /// Sets the buffer for message passing for each underlying transport to the given buffer size.
    pub fn pair(
        buffer: usize,
    ) -> (
        FramedTransport<InmemoryTransport>,
        FramedTransport<InmemoryTransport>,
    ) {
        let (a, b) = InmemoryTransport::pair(buffer);
        let a = FramedTransport::new(a, Box::new(PlainCodec::new()));
        let b = FramedTransport::new(b, Box::new(PlainCodec::new()));
        (a, b)
    }

    /// Links the underlying transports together using [`InmemoryTransport::link`].
    pub fn link(&mut self, other: &mut Self, buffer: usize) {
        self.inner.link(&mut other.inner, buffer)
    }
}

#[cfg(test)]
impl FramedTransport<InmemoryTransport> {
    /// Generates a test pair with default capacity
    pub fn test_pair(
        buffer: usize,
    ) -> (
        FramedTransport<InmemoryTransport>,
        FramedTransport<InmemoryTransport>,
    ) {
        Self::pair(buffer)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::common::TestTransport;
    use bytes::BufMut;
    use test_log::test;

    /// Codec that always succeeds without altering the frame
    #[derive(Clone, Debug, PartialEq, Eq)]
    struct OkCodec;

    impl Codec for OkCodec {
        fn encode<'a>(&mut self, frame: Frame<'a>) -> io::Result<Frame<'a>> {
            Ok(frame)
        }

        fn decode<'a>(&mut self, frame: Frame<'a>) -> io::Result<Frame<'a>> {
            Ok(frame)
        }
    }

    /// Codec that always fails
    #[derive(Clone, Debug, PartialEq, Eq)]
    struct ErrCodec;

    impl Codec for ErrCodec {
        fn encode<'a>(&mut self, _frame: Frame<'a>) -> io::Result<Frame<'a>> {
            Err(io::Error::from(io::ErrorKind::Other))
        }

        fn decode<'a>(&mut self, _frame: Frame<'a>) -> io::Result<Frame<'a>> {
            Err(io::Error::from(io::ErrorKind::Other))
        }
    }

    // Hardcoded custom codec so we can verify it works differently than plain codec
    #[derive(Clone)]
    struct CustomCodec;

    impl Codec for CustomCodec {
        fn encode<'a>(&mut self, _: Frame<'a>) -> io::Result<Frame<'a>> {
            Ok(Frame::new(b"encode"))
        }

        fn decode<'a>(&mut self, _: Frame<'a>) -> io::Result<Frame<'a>> {
            Ok(Frame::new(b"decode"))
        }
    }

    type SimulateTryReadFn = Box<dyn Fn(&mut [u8]) -> io::Result<usize> + Send + Sync>;

    /// Simulate calls to try_read by feeding back `data` in `step` increments, triggering a block
    /// if `block_on` returns true where `block_on` is provided a counter value that is incremented
    /// every time the simulated `try_read` function is called
    ///
    /// NOTE: This will inject the frame len in front of the provided data to properly simulate
    ///       receiving a frame of data
    fn simulate_try_read(
        frames: Vec<Frame>,
        step: usize,
        block_on: impl Fn(usize) -> bool + Send + Sync + 'static,
    ) -> SimulateTryReadFn {
        use std::sync::atomic::{AtomicUsize, Ordering};

        // Stuff all of our frames into a single byte collection
        let data = {
            let mut buf = BytesMut::new();

            for frame in frames {
                frame.write(&mut buf).unwrap();
            }

            buf.to_vec()
        };

        let idx = AtomicUsize::new(0);
        let cnt = AtomicUsize::new(0);

        Box::new(move |buf| {
            if block_on(cnt.fetch_add(1, Ordering::Relaxed)) {
                return Err(io::Error::from(io::ErrorKind::WouldBlock));
            }

            let start = idx.fetch_add(step, Ordering::Relaxed);
            let end = start + step;
            let end = if end > data.len() { data.len() } else { end };
            let len = if start > end { 0 } else { end - start };

            buf[..len].copy_from_slice(&data[start..end]);
            Ok(len)
        })
    }

    #[test]
    fn try_read_frame_should_return_would_block_if_fails_to_read_frame_before_blocking() {
        // Should fail if immediately blocks
        let mut transport = FramedTransport::new(
            TestTransport {
                f_try_read: Box::new(|_| Err(io::Error::from(io::ErrorKind::WouldBlock))),
                f_ready: Box::new(|_| Ok(Ready::READABLE)),
                ..Default::default()
            },
            Box::new(OkCodec),
        );
        assert_eq!(
            transport.try_read_frame().unwrap_err().kind(),
            io::ErrorKind::WouldBlock
        );

        // Should fail if not read enough bytes before blocking
        let mut transport = FramedTransport::new(
            TestTransport {
                f_try_read: simulate_try_read(vec![Frame::new(b"some data")], 1, |cnt| cnt == 1),
                f_ready: Box::new(|_| Ok(Ready::READABLE)),
                ..Default::default()
            },
            Box::new(OkCodec),
        );
        assert_eq!(
            transport.try_read_frame().unwrap_err().kind(),
            io::ErrorKind::WouldBlock
        );
    }

    #[test]
    fn try_read_frame_should_return_error_if_encountered_error_with_reading_bytes() {
        let mut transport = FramedTransport::new(
            TestTransport {
                f_try_read: Box::new(|_| Err(io::Error::from(io::ErrorKind::NotConnected))),
                f_ready: Box::new(|_| Ok(Ready::READABLE)),
                ..Default::default()
            },
            Box::new(OkCodec),
        );
        assert_eq!(
            transport.try_read_frame().unwrap_err().kind(),
            io::ErrorKind::NotConnected
        );
    }

    #[test]
    fn try_read_frame_should_return_error_if_encountered_error_during_decode() {
        let mut transport = FramedTransport::new(
            TestTransport {
                f_try_read: simulate_try_read(vec![Frame::new(b"some data")], 1, |_| false),
                f_ready: Box::new(|_| Ok(Ready::READABLE)),
                ..Default::default()
            },
            Box::new(ErrCodec),
        );
        assert_eq!(
            transport.try_read_frame().unwrap_err().kind(),
            io::ErrorKind::Other
        );
    }

    #[test]
    fn try_read_frame_should_return_next_available_frame() {
        let data = {
            let mut data = BytesMut::new();
            Frame::new(b"hello world").write(&mut data).unwrap();
            data.freeze()
        };

        let mut transport = FramedTransport::new(
            TestTransport {
                f_try_read: Box::new(move |buf| {
                    buf[..data.len()].copy_from_slice(data.as_ref());
                    Ok(data.len())
                }),
                f_ready: Box::new(|_| Ok(Ready::READABLE)),
                ..Default::default()
            },
            Box::new(OkCodec),
        );
        assert_eq!(transport.try_read_frame().unwrap().unwrap(), b"hello world");
    }

    #[test]
    fn try_read_frame_should_return_next_available_frame_if_already_in_incoming_buffer() {
        // Store two frames in our data to transmit
        let data = {
            let mut data = BytesMut::new();
            Frame::new(b"hello world").write(&mut data).unwrap();
            Frame::new(b"hello again").write(&mut data).unwrap();
            data.freeze()
        };

        // Configure transport to return both frames in single read such that we have another
        // complete frame to parse (in the case that an underlying try_read would block, but we had
        // data available before that)
        let mut transport = FramedTransport::new(
            TestTransport {
                f_try_read: Box::new(move |buf| {
                    static mut CNT: usize = 0;
                    unsafe {
                        CNT += 1;
                        if CNT == 2 {
                            Err(io::Error::from(io::ErrorKind::WouldBlock))
                        } else {
                            let n = data.len();
                            buf[..data.len()].copy_from_slice(data.as_ref());
                            Ok(n)
                        }
                    }
                }),
                f_ready: Box::new(|_| Ok(Ready::READABLE)),
                ..Default::default()
            },
            Box::new(OkCodec),
        );

        // Read first frame
        assert_eq!(transport.try_read_frame().unwrap().unwrap(), b"hello world");

        // Read second frame
        assert_eq!(transport.try_read_frame().unwrap().unwrap(), b"hello again");
    }

    #[test]
    fn try_read_frame_should_keep_reading_until_a_frame_is_found() {
        const STEP_SIZE: usize = Frame::HEADER_SIZE + 7;

        let mut transport = FramedTransport::new(
            TestTransport {
                f_try_read: simulate_try_read(
                    vec![Frame::new(b"hello world"), Frame::new(b"test hello")],
                    STEP_SIZE,
                    |_| false,
                ),
                f_ready: Box::new(|_| Ok(Ready::READABLE)),
                ..Default::default()
            },
            Box::new(OkCodec),
        );
        assert_eq!(transport.try_read_frame().unwrap().unwrap(), b"hello world");

        // Should have leftover bytes from next frame
        // where len = 10, "tes"
        assert_eq!(
            transport.incoming.to_vec(),
            [0, 0, 0, 0, 0, 0, 0, 10, b't', b'e', b's']
        );
    }

    #[test]
    fn try_write_frame_should_return_would_block_if_fails_to_write_frame_before_blocking() {
        let mut transport = FramedTransport::new(
            TestTransport {
                f_try_write: Box::new(|_| Err(io::Error::from(io::ErrorKind::WouldBlock))),
                f_ready: Box::new(|_| Ok(Ready::WRITABLE)),
                ..Default::default()
            },
            Box::new(OkCodec),
        );

        // First call will only write part of the frame and then return WouldBlock
        assert_eq!(
            transport
                .try_write_frame(b"hello world")
                .unwrap_err()
                .kind(),
            io::ErrorKind::WouldBlock
        );
    }

    #[test]
    fn try_write_frame_should_return_error_if_encountered_error_with_writing_bytes() {
        let mut transport = FramedTransport::new(
            TestTransport {
                f_try_write: Box::new(|_| Err(io::Error::from(io::ErrorKind::NotConnected))),
                f_ready: Box::new(|_| Ok(Ready::WRITABLE)),
                ..Default::default()
            },
            Box::new(OkCodec),
        );
        assert_eq!(
            transport
                .try_write_frame(b"hello world")
                .unwrap_err()
                .kind(),
            io::ErrorKind::NotConnected
        );
    }

    #[test]
    fn try_write_frame_should_return_error_if_encountered_error_during_encode() {
        let mut transport = FramedTransport::new(
            TestTransport {
                f_try_write: Box::new(|buf| Ok(buf.len())),
                f_ready: Box::new(|_| Ok(Ready::WRITABLE)),
                ..Default::default()
            },
            Box::new(ErrCodec),
        );
        assert_eq!(
            transport
                .try_write_frame(b"hello world")
                .unwrap_err()
                .kind(),
            io::ErrorKind::Other
        );
    }

    #[test]
    fn try_write_frame_should_write_entire_frame_if_possible() {
        let (tx, rx) = std::sync::mpsc::sync_channel(1);
        let mut transport = FramedTransport::new(
            TestTransport {
                f_try_write: Box::new(move |buf| {
                    let len = buf.len();
                    tx.send(buf.to_vec()).unwrap();
                    Ok(len)
                }),
                f_ready: Box::new(|_| Ok(Ready::WRITABLE)),
                ..Default::default()
            },
            Box::new(OkCodec),
        );

        transport.try_write_frame(b"hello world").unwrap();

        // Transmitted data should be encoded using the framed transport's codec
        assert_eq!(
            rx.try_recv().unwrap(),
            [11u64.to_be_bytes().as_slice(), b"hello world".as_slice()].concat()
        );
    }

    #[test]
    fn try_write_frame_should_write_any_prior_queued_bytes_before_writing_next_frame() {
        const STEP_SIZE: usize = Frame::HEADER_SIZE + 5;
        let (tx, rx) = std::sync::mpsc::sync_channel(10);
        let mut transport = FramedTransport::new(
            TestTransport {
                f_try_write: Box::new(move |buf| {
                    static mut CNT: usize = 0;
                    unsafe {
                        CNT += 1;
                        if CNT == 2 {
                            Err(io::Error::from(io::ErrorKind::WouldBlock))
                        } else {
                            let len = std::cmp::min(STEP_SIZE, buf.len());
                            tx.send(buf[..len].to_vec()).unwrap();
                            Ok(len)
                        }
                    }
                }),
                f_ready: Box::new(|_| Ok(Ready::WRITABLE)),
                ..Default::default()
            },
            Box::new(OkCodec),
        );

        // First call will only write part of the frame and then return WouldBlock
        assert_eq!(
            transport
                .try_write_frame(b"hello world")
                .unwrap_err()
                .kind(),
            io::ErrorKind::WouldBlock
        );

        // Transmitted data should be encoded using the framed transport's codec
        assert_eq!(
            rx.try_recv().unwrap(),
            [11u64.to_be_bytes().as_slice(), b"hello".as_slice()].concat()
        );
        assert_eq!(
            rx.try_recv().unwrap_err(),
            std::sync::mpsc::TryRecvError::Empty
        );

        // Next call will keep writing successfully until done
        transport.try_write_frame(b"test").unwrap();
        assert_eq!(
            rx.try_recv().unwrap(),
            [b' ', b'w', b'o', b'r', b'l', b'd', 0, 0, 0, 0, 0, 0, 0]
        );
        assert_eq!(rx.try_recv().unwrap(), [4, b't', b'e', b's', b't']);
        assert_eq!(
            rx.try_recv().unwrap_err(),
            std::sync::mpsc::TryRecvError::Empty
        );
    }

    #[test]
    fn try_flush_should_return_error_if_try_write_fails() {
        let mut transport = FramedTransport::new(
            TestTransport {
                f_try_write: Box::new(|_| Err(io::Error::from(io::ErrorKind::NotConnected))),
                f_ready: Box::new(|_| Ok(Ready::WRITABLE)),
                ..Default::default()
            },
            Box::new(OkCodec),
        );

        // Set our outgoing buffer to flush
        transport.outgoing.put_slice(b"hello world");

        // Perform flush and verify error happens
        assert_eq!(
            transport.try_flush().unwrap_err().kind(),
            io::ErrorKind::NotConnected
        );
    }

    #[test]
    fn try_flush_should_return_error_if_try_write_returns_0_bytes_written() {
        let mut transport = FramedTransport::new(
            TestTransport {
                f_try_write: Box::new(|_| Ok(0)),
                f_ready: Box::new(|_| Ok(Ready::WRITABLE)),
                ..Default::default()
            },
            Box::new(OkCodec),
        );

        // Set our outgoing buffer to flush
        transport.outgoing.put_slice(b"hello world");

        // Perform flush and verify error happens
        assert_eq!(
            transport.try_flush().unwrap_err().kind(),
            io::ErrorKind::WriteZero
        );
    }

    #[test]
    fn try_flush_should_be_noop_if_nothing_to_flush() {
        let mut transport = FramedTransport::new(
            TestTransport {
                f_try_write: Box::new(|_| Err(io::Error::from(io::ErrorKind::NotConnected))),
                f_ready: Box::new(|_| Ok(Ready::WRITABLE)),
                ..Default::default()
            },
            Box::new(OkCodec),
        );

        // Perform flush and verify nothing happens
        transport.try_flush().unwrap();
    }

    #[test]
    fn try_flush_should_continually_call_try_write_until_outgoing_buffer_is_empty() {
        const STEP_SIZE: usize = 5;
        let (tx, rx) = std::sync::mpsc::sync_channel(10);
        let mut transport = FramedTransport::new(
            TestTransport {
                f_try_write: Box::new(move |buf| {
                    let len = std::cmp::min(STEP_SIZE, buf.len());
                    tx.send(buf[..len].to_vec()).unwrap();
                    Ok(len)
                }),
                f_ready: Box::new(|_| Ok(Ready::WRITABLE)),
                ..Default::default()
            },
            Box::new(OkCodec),
        );

        // Set our outgoing buffer to flush
        transport.outgoing.put_slice(b"hello world");

        // Perform flush
        transport.try_flush().unwrap();

        // Verify outgoing data flushed with N calls to try_write
        assert_eq!(rx.try_recv().unwrap(), b"hello".as_slice());
        assert_eq!(rx.try_recv().unwrap(), b" worl".as_slice());
        assert_eq!(rx.try_recv().unwrap(), b"d".as_slice());
        assert_eq!(
            rx.try_recv().unwrap_err(),
            std::sync::mpsc::TryRecvError::Empty
        );
    }

    #[inline]
    async fn test_synchronize_stats(
        transport: &mut FramedTransport<InmemoryTransport>,
        sent_cnt: u64,
        received_cnt: u64,
        available_cnt: u64,
        expected_sent_cnt: u64,
        expected_received_cnt: u64,
        expected_available_cnt: u64,
    ) {
        // From the other side, claim that we have received 2 frames
        // (sent, received, available)
        transport
            .write_frame_for(&(sent_cnt, received_cnt, available_cnt))
            .await
            .unwrap();

        // Receive stats from the other side
        let (sent, received, available) = transport
            .read_frame_as::<(u64, u64, u64)>()
            .await
            .unwrap()
            .unwrap();
        assert_eq!(sent, expected_sent_cnt, "Wrong sent cnt");
        assert_eq!(received, expected_received_cnt, "Wrong received cnt");
        assert_eq!(available, expected_available_cnt, "Wrong available cnt");
    }

    #[test(tokio::test)]
    async fn synchronize_should_resend_no_frames_if_other_side_claims_it_has_more_than_us() {
        let (mut t1, mut t2) = FramedTransport::pair(100);

        // Configure the backup such that we have sent one frame
        t2.backup.push_frame(Frame::new(b"hello world"));
        t2.backup.increment_sent_cnt();

        // Spawn a separate task to do synchronization simulation so we don't deadlock, and also
        // send a frame to indicate when finished so we can know when synchronization is done
        // during our test
        let _task = tokio::spawn(async move {
            t2.synchronize().await.unwrap();
            t2.write_frame(Frame::new(b"done")).await.unwrap();
            t2
        });

        // fake     (sent, received, available) = 0, 2, 0
        // expected (sent, received, available) = 1, 0, 1
        test_synchronize_stats(&mut t1, 0, 2, 0, 1, 0, 1).await;

        // Should not receive anything before our done indicator
        assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"done");
    }

    #[test(tokio::test)]
    async fn synchronize_should_resend_no_frames_if_none_missing_on_other_side() {
        let (mut t1, mut t2) = FramedTransport::pair(100);

        // Configure the backup such that we have sent one frame
        t2.backup.push_frame(Frame::new(b"hello world"));
        t2.backup.increment_sent_cnt();

        // Spawn a separate task to do synchronization simulation so we don't deadlock, and also
        // send a frame to indicate when finished so we can know when synchronization is done
        // during our test
        let _task = tokio::spawn(async move {
            t2.synchronize().await.unwrap();
            t2.write_frame(Frame::new(b"done")).await.unwrap();
            t2
        });

        // fake     (sent, received, available) = 0, 1, 0
        // expected (sent, received, available) = 1, 0, 1
        test_synchronize_stats(&mut t1, 0, 1, 0, 1, 0, 1).await;

        // Should not receive anything before our done indicator
        assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"done");
    }

    #[test(tokio::test)]
    async fn synchronize_should_resend_some_frames_if_some_missing_on_other_side() {
        let (mut t1, mut t2) = FramedTransport::pair(100);

        // Configure the backup such that we have sent two frames
        t2.backup.push_frame(Frame::new(b"hello"));
        t2.backup.push_frame(Frame::new(b"world"));
        t2.backup.increment_sent_cnt();
        t2.backup.increment_sent_cnt();

        // Spawn a separate task to do synchronization simulation so we don't deadlock, and also
        // send a frame to indicate when finished so we can know when synchronization is done
        // during our test
        let _task = tokio::spawn(async move {
            t2.synchronize().await.unwrap();
            t2.write_frame(Frame::new(b"done")).await.unwrap();
            t2
        });

        // fake     (sent, received, available) = 0, 1, 0
        // expected (sent, received, available) = 2, 0, 2
        test_synchronize_stats(&mut t1, 0, 1, 0, 2, 0, 2).await;

        // Recieve both frames and then the done indicator
        assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"world");
        assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"done");
    }

    #[test(tokio::test)]
    async fn synchronize_should_resend_all_frames_if_all_missing_on_other_side() {
        let (mut t1, mut t2) = FramedTransport::pair(100);

        // Configure the backup such that we have sent two frames
        t2.backup.push_frame(Frame::new(b"hello"));
        t2.backup.push_frame(Frame::new(b"world"));
        t2.backup.increment_sent_cnt();
        t2.backup.increment_sent_cnt();

        // Spawn a separate task to do synchronization simulation so we don't deadlock, and also
        // send a frame to indicate when finished so we can know when synchronization is done
        // during our test
        let _task = tokio::spawn(async move {
            t2.synchronize().await.unwrap();
            t2.write_frame(Frame::new(b"done")).await.unwrap();
            t2
        });

        // fake     (sent, received, available) = 0, 0, 0
        // expected (sent, received, available) = 2, 0, 2
        test_synchronize_stats(&mut t1, 0, 0, 0, 2, 0, 2).await;

        // Recieve both frames and then the done indicator
        assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"hello");
        assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"world");
        assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"done");
    }

    #[test(tokio::test)]
    async fn synchronize_should_resend_available_frames_if_more_than_available_missing_on_other_side(
    ) {
        let (mut t1, mut t2) = FramedTransport::pair(100);

        // Configure the backup such that we have sent two frames, and believe that we have
        // sent 3 in total, a situation that happens once we reach the peak possible size of
        // old frames to store
        t2.backup.push_frame(Frame::new(b"hello"));
        t2.backup.push_frame(Frame::new(b"world"));
        t2.backup.increment_sent_cnt();
        t2.backup.increment_sent_cnt();
        t2.backup.increment_sent_cnt();

        // Spawn a separate task to do synchronization simulation so we don't deadlock, and also
        // send a frame to indicate when finished so we can know when synchronization is done
        // during our test
        let _task = tokio::spawn(async move {
            t2.synchronize().await.unwrap();
            t2.write_frame(Frame::new(b"done")).await.unwrap();
            t2
        });

        // fake     (sent, received, available) = 0, 0, 0
        // expected (sent, received, available) = 3, 0, 2
        test_synchronize_stats(&mut t1, 0, 0, 0, 3, 0, 2).await;

        // Recieve both frames and then the done indicator
        assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"hello");
        assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"world");
        assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"done");
    }

    #[test(tokio::test)]
    async fn synchronize_should_receive_no_frames_if_other_side_claims_it_has_more_than_us() {
        let (mut t1, mut t2) = FramedTransport::pair(100);

        // Mark other side as having received a frame
        t2.backup.increment_received_cnt();

        // Spawn a separate task to do synchronization simulation so we don't deadlock, and also
        // send a frame to indicate when finished so we can know when synchronization is done
        // during our test
        let _task = tokio::spawn(async move {
            t2.synchronize().await.unwrap();
            t2.write_frame(Frame::new(b"done")).await.unwrap();
            t2
        });

        // fake     (sent, received, available) = 0, 0, 0
        // expected (sent, received, available) = 0, 1, 0
        test_synchronize_stats(&mut t1, 0, 0, 0, 0, 1, 0).await;

        // Recieve the done indicator
        assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"done");
    }

    #[test(tokio::test)]
    async fn synchronize_should_receive_no_frames_if_none_missing_from_other_side() {
        let (mut t1, mut t2) = FramedTransport::pair(100);

        // Mark other side as having received a frame
        t2.backup.increment_received_cnt();

        // Spawn a separate task to do synchronization simulation so we don't deadlock, and also
        // send a frame to indicate when finished so we can know when synchronization is done
        // during our test
        let _task = tokio::spawn(async move {
            t2.synchronize().await.unwrap();
            t2.write_frame(Frame::new(b"done")).await.unwrap();
            t2
        });

        // fake     (sent, received, available) = 1, 0, 1
        // expected (sent, received, available) = 0, 1, 0
        test_synchronize_stats(&mut t1, 1, 0, 1, 0, 1, 0).await;

        // Recieve the done indicator
        assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"done");
    }

    #[test(tokio::test)]
    async fn synchronize_should_receive_some_frames_if_some_missing_from_other_side() {
        let (mut t1, mut t2) = FramedTransport::pair(100);

        // Mark other side as having received a frame
        t2.backup.increment_received_cnt();

        // Spawn a separate task to do synchronization simulation so we don't deadlock, and also
        // send a frame to indicate when finished so we can know when synchronization is done
        // during our test
        let task = tokio::spawn(async move {
            t2.synchronize().await.unwrap();
            t2.write_frame(Frame::new(b"done")).await.unwrap();
            t2
        });

        // fake     (sent, received, available) = 2, 0, 2
        // expected (sent, received, available) = 0, 1, 0
        test_synchronize_stats(&mut t1, 2, 0, 2, 0, 1, 0).await;

        // Send a frame to fill the gap
        t1.write_frame(Frame::new(b"hello")).await.unwrap();

        // Recieve the done indicator
        assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"done");

        // Drop the transport such that the other side will get a definite termination
        drop(t1);

        // Verify that the frame was captured on the other side
        let mut t2 = task.await.unwrap();
        assert_eq!(t2.read_frame().await.unwrap().unwrap(), b"hello");
        assert_eq!(t2.read_frame().await.unwrap(), None);
    }

    #[test(tokio::test)]
    async fn synchronize_should_receive_all_frames_if_all_missing_from_other_side() {
        let (mut t1, mut t2) = FramedTransport::pair(100);

        // Spawn a separate task to do synchronization simulation so we don't deadlock, and also
        // send a frame to indicate when finished so we can know when synchronization is done
        // during our test
        let task = tokio::spawn(async move {
            t2.synchronize().await.unwrap();
            t2.write_frame(Frame::new(b"done")).await.unwrap();
            t2
        });

        // fake     (sent, received, available) = 2, 0, 2
        // expected (sent, received, available) = 0, 0, 0
        test_synchronize_stats(&mut t1, 2, 0, 2, 0, 0, 0).await;

        // Send frames to fill the gap
        t1.write_frame(Frame::new(b"hello")).await.unwrap();
        t1.write_frame(Frame::new(b"world")).await.unwrap();

        // Recieve the done indicator
        assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"done");

        // Drop the transport such that the other side will get a definite termination
        drop(t1);

        // Verify that the frame was captured on the other side
        let mut t2 = task.await.unwrap();
        assert_eq!(t2.read_frame().await.unwrap().unwrap(), b"hello");
        assert_eq!(t2.read_frame().await.unwrap().unwrap(), b"world");
        assert_eq!(t2.read_frame().await.unwrap(), None);
    }

    #[test(tokio::test)]
    async fn synchronize_should_receive_all_frames_if_more_than_all_missing_from_other_side() {
        let (mut t1, mut t2) = FramedTransport::pair(100);

        // Spawn a separate task to do synchronization simulation so we don't deadlock, and also
        // send a frame to indicate when finished so we can know when synchronization is done
        // during our test
        let task = tokio::spawn(async move {
            t2.synchronize().await.unwrap();
            t2.write_frame(Frame::new(b"done")).await.unwrap();
            t2
        });

        // fake     (sent, received, available) = 3, 0, 2
        // expected (sent, received, available) = 0, 0, 0
        test_synchronize_stats(&mut t1, 2, 0, 2, 0, 0, 0).await;

        // Send frames to fill the gap
        t1.write_frame(Frame::new(b"hello")).await.unwrap();
        t1.write_frame(Frame::new(b"world")).await.unwrap();

        // Recieve the done indicator
        assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"done");

        // Drop the transport such that the other side will get a definite termination
        drop(t1);

        // Verify that the frame was captured on the other side
        let mut t2 = task.await.unwrap();
        assert_eq!(t2.read_frame().await.unwrap().unwrap(), b"hello");
        assert_eq!(t2.read_frame().await.unwrap().unwrap(), b"world");
        assert_eq!(t2.read_frame().await.unwrap(), None);
    }

    #[test(tokio::test)]
    async fn synchronize_should_fail_if_connection_terminated_before_receiving_missing_frames() {
        let (mut t1, mut t2) = FramedTransport::pair(100);

        // Spawn a separate task to do synchronization simulation so we don't deadlock, and also
        // send a frame to indicate when finished so we can know when synchronization is done
        // during our test
        let task = tokio::spawn(async move {
            t2.synchronize().await.unwrap();
            t2.write_frame(Frame::new(b"done")).await.unwrap();
            t2
        });

        // fake     (sent, received, available) = 2, 0, 2
        // expected (sent, received, available) = 0, 0, 0
        test_synchronize_stats(&mut t1, 2, 0, 2, 0, 0, 0).await;

        // Send one frame to fill the gap
        t1.write_frame(Frame::new(b"hello")).await.unwrap();

        // Drop the transport to cause a failure
        drop(t1);

        // Verify that the other side's synchronization failed
        task.await.unwrap_err();
    }

    #[test(tokio::test)]
    async fn synchronize_should_fail_if_connection_terminated_while_waiting_for_frame_stats() {
        let (t1, mut t2) = FramedTransport::pair(100);

        // Spawn a separate task to do synchronization simulation so we don't deadlock, and also
        // send a frame to indicate when finished so we can know when synchronization is done
        // during our test
        let task = tokio::spawn(async move {
            t2.synchronize().await.unwrap();
            t2.write_frame(Frame::new(b"done")).await.unwrap();
            t2
        });

        // Drop the transport to cause a failure
        drop(t1);

        // Verify that the other side's synchronization failed
        task.await.unwrap_err();
    }

    #[test(tokio::test)]
    async fn synchronize_should_clear_any_prexisting_incoming_and_outgoing_data() {
        let (mut t1, mut t2) = FramedTransport::pair(100);

        // Put some frames into the incoming and outgoing of our transport
        Frame::new(b"bad incoming").write(&mut t2.incoming).unwrap();
        Frame::new(b"bad outgoing").write(&mut t2.outgoing).unwrap();

        // Configure the backup such that we have sent two frames
        t2.backup.push_frame(Frame::new(b"hello"));
        t2.backup.push_frame(Frame::new(b"world"));
        t2.backup.increment_sent_cnt();
        t2.backup.increment_sent_cnt();

        // Spawn a separate task to do synchronization simulation so we don't deadlock, and also
        // send a frame to indicate when finished so we can know when synchronization is done
        // during our test
        let task = tokio::spawn(async move {
            t2.synchronize().await.unwrap();
            t2.write_frame(Frame::new(b"done")).await.unwrap();
            t2
        });

        // fake     (sent, received, available) = 2, 0, 2
        // expected (sent, received, available) = 2, 0, 2
        test_synchronize_stats(&mut t1, 2, 0, 2, 2, 0, 2).await;

        // Send frames to fill the gap
        t1.write_frame(Frame::new(b"one")).await.unwrap();
        t1.write_frame(Frame::new(b"two")).await.unwrap();

        // Recieve both frames and then the done indicator
        assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"hello");
        assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"world");
        assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"done");

        // Drop the transport such that the other side will get a definite termination
        drop(t1);

        // Verify that the frame was captured on the other side
        let mut t2 = task.await.unwrap();
        assert_eq!(t2.read_frame().await.unwrap().unwrap(), b"one");
        assert_eq!(t2.read_frame().await.unwrap().unwrap(), b"two");
        assert_eq!(t2.read_frame().await.unwrap(), None);
    }

    #[test(tokio::test)]
    async fn synchronize_should_not_increment_the_sent_frames_or_store_replayed_frames_in_the_backup(
    ) {
        let (mut t1, mut t2) = FramedTransport::pair(100);

        // Configure the backup such that we have sent two frames
        t2.backup.push_frame(Frame::new(b"hello"));
        t2.backup.push_frame(Frame::new(b"world"));
        t2.backup.increment_sent_cnt();
        t2.backup.increment_sent_cnt();

        // Spawn a separate task to do synchronization simulation so we don't deadlock, and also
        // send a frame to indicate when finished so we can know when synchronization is done
        // during our test
        let task = tokio::spawn(async move {
            t2.synchronize().await.unwrap();

            t2.backup.freeze();
            t2.write_frame(Frame::new(b"done")).await.unwrap();
            t2.backup.unfreeze();

            t2
        });

        // fake     (sent, received, available) = 0, 0, 0
        // expected (sent, received, available) = 2, 0, 2
        test_synchronize_stats(&mut t1, 0, 0, 0, 2, 0, 2).await;

        // Recieve both frames and then the done indicator
        assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"hello");
        assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"world");
        assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"done");

        // Drop the transport such that the other side will get a definite termination
        drop(t1);

        // Verify that the backup on the other side was unaltered by the frames being sent
        let t2 = task.await.unwrap();
        assert_eq!(t2.backup.sent_cnt(), 2, "Wrong sent cnt");
        assert_eq!(t2.backup.received_cnt(), 0, "Wrong received cnt");
        assert_eq!(t2.backup.frame_cnt(), 2, "Wrong frame cnt");
    }

    #[test(tokio::test)]
    async fn synchronize_should_update_the_backup_received_cnt_to_match_other_side_sent() {
        let (mut t1, mut t2) = FramedTransport::pair(100);

        // Spawn a separate task to do synchronization simulation so we don't deadlock, and also
        // send a frame to indicate when finished so we can know when synchronization is done
        // during our test
        let task = tokio::spawn(async move {
            t2.synchronize().await.unwrap();

            t2.backup.freeze();
            t2.write_frame(Frame::new(b"done")).await.unwrap();
            t2.backup.unfreeze();

            t2
        });

        // fake     (sent, received, available) = 2, 0, 1
        // expected (sent, received, available) = 0, 0, 0
        test_synchronize_stats(&mut t1, 2, 0, 1, 0, 0, 0).await;

        // Send frames to fill the gap
        t1.write_frame(Frame::new(b"hello")).await.unwrap();

        // Recieve both frames and then the done indicator
        assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"done");

        // Drop the transport such that the other side will get a definite termination
        drop(t1);

        // Verify that the backup on the other side updated based on sent count and not available
        let t2 = task.await.unwrap();
        assert_eq!(t2.backup.sent_cnt(), 0, "Wrong sent cnt");
        assert_eq!(t2.backup.received_cnt(), 2, "Wrong received cnt");
        assert_eq!(t2.backup.frame_cnt(), 0, "Wrong frame cnt");
    }

    #[test(tokio::test)]
    async fn synchronize_should_work_even_if_codec_changes_between_attempts() {
        let (mut t1, _t1_other) = FramedTransport::pair(100);
        let (mut t2, _t2_other) = FramedTransport::pair(100);

        // Send some frames from each side
        t1.write_frame(Frame::new(b"hello")).await.unwrap();
        t1.write_frame(Frame::new(b"world")).await.unwrap();
        t2.write_frame(Frame::new(b"foo")).await.unwrap();
        t2.write_frame(Frame::new(b"bar")).await.unwrap();

        // Drop the other transports, link our real transports together, and change the codec
        drop(_t1_other);
        drop(_t2_other);
        t1.link(&mut t2, 100);
        let codec = EncryptionCodec::new_xchacha20poly1305(Default::default());
        t1.codec = Box::new(codec.clone());
        t2.codec = Box::new(codec);

        // Spawn a separate task to do synchronization so we don't deadlock
        let task = tokio::spawn(async move {
            t2.synchronize().await.unwrap();
            t2
        });

        t1.synchronize().await.unwrap();

        // Verify that we get the appropriate frames from both sides
        let mut t2 = task.await.unwrap();
        assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"foo");
        assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"bar");
        assert_eq!(t2.read_frame().await.unwrap().unwrap(), b"hello");
        assert_eq!(t2.read_frame().await.unwrap().unwrap(), b"world");
    }

    #[test(tokio::test)]
    async fn handshake_should_configure_transports_with_matching_codec() {
        let (mut t1, mut t2) = FramedTransport::test_pair(100);

        // NOTE: Spawn a separate task for one of our transports so we can communicate without
        //       deadlocking
        let task = tokio::spawn(async move {
            // Wait for handshake to complete
            t2.server_handshake().await.unwrap();

            // Receive one frame and echo it back
            let frame = t2.read_frame().await.unwrap().unwrap();
            t2.write_frame(frame).await.unwrap();
        });

        t1.client_handshake().await.unwrap();

        // Verify that the transports can still communicate with one another
        t1.write_frame(b"hello world").await.unwrap();
        assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"hello world");

        // Ensure that the other transport did not error
        task.await.unwrap();
    }

    #[test(tokio::test)]
    async fn handshake_failing_should_ensure_existing_codec_remains() {
        let (mut t1, t2) = FramedTransport::test_pair(100);

        // Set a different codec on our transport so we can verify it doesn't change
        t1.set_codec(Box::new(CustomCodec));

        // Drop our transport on the other side to cause an immediate failure
        drop(t2);

        // Ensure we detect the failure on handshake
        t1.client_handshake().await.unwrap_err();

        // Verify that the codec did not reset to plain text by using the codec
        assert_eq!(t1.codec.encode(Frame::new(b"test")).unwrap(), b"encode");
        assert_eq!(t1.codec.decode(Frame::new(b"test")).unwrap(), b"decode");
    }

    #[test(tokio::test)]
    async fn handshake_should_clear_any_intermittent_buffer_contents_prior_to_handshake_failing() {
        let (mut t1, t2) = FramedTransport::test_pair(100);

        // Set a different codec on our transport so we can verify it doesn't change
        t1.set_codec(Box::new(CustomCodec));

        // Drop our transport on the other side to cause an immediate failure
        drop(t2);

        // Put some garbage in our buffers
        t1.incoming.extend_from_slice(b"garbage in");
        t1.outgoing.extend_from_slice(b"garbage out");

        // Ensure we detect the failure on handshake
        t1.client_handshake().await.unwrap_err();

        // Verify that the incoming and outgoing buffers are empty
        assert!(t1.incoming.is_empty());
        assert!(t1.outgoing.is_empty());
    }

    #[test(tokio::test)]
    async fn handshake_should_clear_any_intermittent_buffer_contents_prior_to_handshake_succeeding()
    {
        let (mut t1, mut t2) = FramedTransport::test_pair(100);

        // NOTE: Spawn a separate task for one of our transports so we can communicate without
        //       deadlocking
        let task = tokio::spawn(async move {
            // Wait for handshake to complete
            t2.server_handshake().await.unwrap();

            // Receive one frame and echo it back
            let frame = t2.read_frame().await.unwrap().unwrap();
            t2.write_frame(frame).await.unwrap();
        });

        // Put some garbage in our buffers
        t1.incoming.extend_from_slice(b"garbage in");
        t1.outgoing.extend_from_slice(b"garbage out");

        t1.client_handshake().await.unwrap();

        // Verify that the transports can still communicate with one another
        t1.write_frame(b"hello world").await.unwrap();
        assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"hello world");

        // Ensure that the other transport did not error
        task.await.unwrap();

        // Verify that the incoming and outgoing buffers are empty
        assert!(t1.incoming.is_empty());
        assert!(t1.outgoing.is_empty());
    }

    #[test(tokio::test)]
    async fn handshake_for_client_should_fail_if_receives_unexpected_frame_instead_of_options() {
        let (mut t1, mut t2) = FramedTransport::test_pair(100);

        // NOTE: Spawn a separate task for one of our transports so we can communicate without
        //       deadlocking
        let task = tokio::spawn(async move {
            t2.write_frame(b"not a valid frame for handshake")
                .await
                .unwrap();
        });

        // Ensure we detect the failure on handshake
        let err = t1.client_handshake().await.unwrap_err();
        assert_eq!(err.kind(), io::ErrorKind::InvalidData);

        // Ensure that the other transport did not error
        task.await.unwrap();
    }

    #[test(tokio::test)]
    async fn handshake_for_client_should_fail_unable_to_send_codec_choice_to_other_side() {
        let (mut t1, mut t2) = FramedTransport::test_pair(100);

        #[derive(Debug, Serialize, Deserialize)]
        struct Options {
            compression_types: Vec<CompressionType>,
            encryption_types: Vec<EncryptionType>,
        }

        // NOTE: Spawn a separate task for one of our transports so we can communicate without
        //       deadlocking
        let task = tokio::spawn(async move {
            // Send options, and then quit so the client side will fail
            t2.write_frame_for(&Options {
                compression_types: Vec::new(),
                encryption_types: Vec::new(),
            })
            .await
            .unwrap();
        });

        // Ensure we detect the failure on handshake
        let err = t1.client_handshake().await.unwrap_err();
        assert_eq!(err.kind(), io::ErrorKind::WriteZero);

        // Ensure that the other transport did not error
        task.await.unwrap();
    }

    #[test(tokio::test)]
    async fn handshake_for_client_should_fail_if_unable_to_receive_key_exchange_data_from_other_side(
    ) {
        #[derive(Debug, Serialize, Deserialize)]
        struct Options {
            compression_types: Vec<CompressionType>,
            encryption_types: Vec<EncryptionType>,
        }

        let (mut t1, mut t2) = FramedTransport::test_pair(100);

        // Go ahead and queue up a choice, and then queue up invalid key exchange data
        t2.write_frame_for(&Options {
            compression_types: CompressionType::known_variants().to_vec(),
            encryption_types: EncryptionType::known_variants().to_vec(),
        })
        .await
        .unwrap();

        t2.write_frame(b"not valid key exchange data")
            .await
            .unwrap();

        // Ensure we detect the failure on handshake
        let err = t1.client_handshake().await.unwrap_err();
        assert_eq!(err.kind(), io::ErrorKind::InvalidData);
    }

    #[test(tokio::test)]
    async fn handshake_for_server_should_fail_if_receives_unexpected_frame_instead_of_choice() {
        let (mut t1, mut t2) = FramedTransport::test_pair(100);

        // NOTE: Spawn a separate task for one of our transports so we can communicate without
        //       deadlocking
        let task = tokio::spawn(async move {
            t2.write_frame(b"not a valid frame for handshake")
                .await
                .unwrap();
        });

        // Ensure we detect the failure on handshake
        let err = t1.server_handshake().await.unwrap_err();
        assert_eq!(err.kind(), io::ErrorKind::InvalidData);

        // Ensure that the other transport did not error
        task.await.unwrap();
    }

    #[test(tokio::test)]
    async fn handshake_for_server_should_fail_unable_to_send_codec_options_to_other_side() {
        let (mut t1, t2) = FramedTransport::test_pair(100);

        // Drop our other transport to ensure that nothing can be sent to it
        drop(t2);

        // Ensure we detect the failure on handshake
        let err = t1.server_handshake().await.unwrap_err();
        assert_eq!(err.kind(), io::ErrorKind::WriteZero);
    }

    #[test(tokio::test)]
    async fn handshake_for_server_should_fail_if_selected_codec_choice_uses_an_unknown_compression_type(
    ) {
        #[derive(Debug, Serialize, Deserialize)]
        struct Choice {
            compression_level: Option<CompressionLevel>,
            compression_type: Option<CompressionType>,
            encryption_type: Option<EncryptionType>,
        }

        let (mut t1, mut t2) = FramedTransport::test_pair(100);

        // Go ahead and queue up an improper response
        t2.write_frame_for(&Choice {
            compression_level: None,
            compression_type: Some(CompressionType::Unknown),
            encryption_type: None,
        })
        .await
        .unwrap();

        // Ensure we detect the failure on handshake
        let err = t1.server_handshake().await.unwrap_err();
        assert_eq!(err.kind(), io::ErrorKind::InvalidInput);
    }

    #[test(tokio::test)]
    async fn handshake_for_server_should_fail_if_selected_codec_choice_uses_an_unknown_encryption_type(
    ) {
        #[derive(Debug, Serialize, Deserialize)]
        struct Choice {
            compression_level: Option<CompressionLevel>,
            compression_type: Option<CompressionType>,
            encryption_type: Option<EncryptionType>,
        }

        let (mut t1, mut t2) = FramedTransport::test_pair(100);

        // Go ahead and queue up an improper response
        t2.write_frame_for(&Choice {
            compression_level: None,
            compression_type: None,
            encryption_type: Some(EncryptionType::Unknown),
        })
        .await
        .unwrap();

        // Ensure we detect the failure on handshake
        let err = t1.server_handshake().await.unwrap_err();
        assert_eq!(err.kind(), io::ErrorKind::InvalidInput);
    }

    #[test(tokio::test)]
    async fn handshake_for_server_should_fail_if_unable_to_receive_key_exchange_data_from_other_side(
    ) {
        #[derive(Debug, Serialize, Deserialize)]
        struct Choice {
            compression_level: Option<CompressionLevel>,
            compression_type: Option<CompressionType>,
            encryption_type: Option<EncryptionType>,
        }

        let (mut t1, mut t2) = FramedTransport::test_pair(100);

        // Go ahead and queue up a choice, and then queue up invalid key exchange data
        t2.write_frame_for(&Choice {
            compression_level: None,
            compression_type: None,
            encryption_type: Some(EncryptionType::XChaCha20Poly1305),
        })
        .await
        .unwrap();

        t2.write_frame(b"not valid key exchange data")
            .await
            .unwrap();

        // Ensure we detect the failure on handshake
        let err = t1.server_handshake().await.unwrap_err();
        assert_eq!(err.kind(), io::ErrorKind::InvalidData);
    }

    #[test(tokio::test)]
    async fn exchange_keys_should_fail_if_unable_to_send_exchange_data_to_other_side() {
        let (mut t1, t2) = FramedTransport::test_pair(100);

        // Drop the other side to ensure that the exchange fails at the beginning
        drop(t2);

        // Perform key exchange and verify error is as expected
        assert_eq!(
            t1.exchange_keys().await.unwrap_err().kind(),
            io::ErrorKind::WriteZero
        );
    }

    #[test(tokio::test)]
    async fn exchange_keys_should_fail_if_received_invalid_exchange_data() {
        let (mut t1, mut t2) = FramedTransport::test_pair(100);

        // Queue up an invalid exchange response
        t2.write_frame(b"some invalid frame").await.unwrap();

        // Perform key exchange and verify error is as expected
        assert_eq!(
            t1.exchange_keys().await.unwrap_err().kind(),
            io::ErrorKind::InvalidData
        );
    }

    #[test(tokio::test)]
    async fn exchange_keys_should_return_shared_secret_key_if_successful() {
        let (mut t1, mut t2) = FramedTransport::test_pair(100);

        // Spawn a task to avoid deadlocking
        let task = tokio::spawn(async move { t2.exchange_keys().await.unwrap() });

        // Perform key exchange
        let key = t1.exchange_keys().await.unwrap();

        // Validate that the keys on both sides match
        assert_eq!(key, task.await.unwrap());
    }
}