1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
use std::{mem::MaybeUninit, ops::Index, rc::Rc};
use generational_box::AnyStorage;
use crate::MappedSignal;
/// A reference to a value that can be read from.
#[allow(type_alias_bounds)]
pub type ReadableRef<T: Readable, O = <T as Readable>::Target> = <T::Storage as AnyStorage>::Ref<O>;
/// A trait for states that can be read from like [`crate::Signal`], [`crate::GlobalSignal`], or [`crate::ReadOnlySignal`]. You may choose to accept this trait as a parameter instead of the concrete type to allow for more flexibility in your API. For example, instead of creating two functions, one that accepts a [`crate::Signal`] and one that accepts a [`crate::GlobalSignal`], you can create one function that accepts a [`Readable`] type.
pub trait Readable {
    /// The target type of the reference.
    type Target: ?Sized + 'static;
    /// The type of the storage this readable uses.
    type Storage: AnyStorage;
    /// Map the readable type to a new type.
    fn map<O>(self, f: impl Fn(&Self::Target) -> &O + 'static) -> MappedSignal<O, Self::Storage>
    where
        Self: Clone + Sized + 'static,
    {
        let mapping = Rc::new(f);
        let try_read = Rc::new({
            let self_ = self.clone();
            let mapping = mapping.clone();
            move || {
                self_
                    .try_read()
                    .map(|ref_| <Self::Storage as AnyStorage>::map(ref_, |r| mapping(r)))
            }
        })
            as Rc<
                dyn Fn() -> Result<ReadableRef<Self, O>, generational_box::BorrowError> + 'static,
            >;
        let peek = Rc::new(move || <Self::Storage as AnyStorage>::map(self.peek(), |r| mapping(r)))
            as Rc<dyn Fn() -> ReadableRef<Self, O> + 'static>;
        MappedSignal::new(try_read, peek)
    }
    /// Get the current value of the state. If this is a signal, this will subscribe the current scope to the signal. If the value has been dropped, this will panic.
    #[track_caller]
    fn read(&self) -> ReadableRef<Self> {
        self.try_read().unwrap()
    }
    /// Try to get the current value of the state. If this is a signal, this will subscribe the current scope to the signal. If the value has been dropped, this will panic.
    #[track_caller]
    fn try_read(&self) -> Result<ReadableRef<Self>, generational_box::BorrowError>;
    /// Get the current value of the state without subscribing to updates. If the value has been dropped, this will panic.
    fn peek(&self) -> ReadableRef<Self>;
    /// Clone the inner value and return it. If the value has been dropped, this will panic.
    #[track_caller]
    fn cloned(&self) -> Self::Target
    where
        Self::Target: Clone,
    {
        self.read().clone()
    }
    /// Run a function with a reference to the value. If the value has been dropped, this will panic.
    #[track_caller]
    fn with<O>(&self, f: impl FnOnce(&Self::Target) -> O) -> O {
        f(&*self.read())
    }
    /// Run a function with a reference to the value. If the value has been dropped, this will panic.
    #[track_caller]
    fn with_peek<O>(&self, f: impl FnOnce(&Self::Target) -> O) -> O {
        f(&*self.peek())
    }
    /// Index into the inner value and return a reference to the result. If the value has been dropped or the index is invalid, this will panic.
    #[track_caller]
    fn index<I>(&self, index: I) -> ReadableRef<Self, <Self::Target as std::ops::Index<I>>::Output>
    where
        Self::Target: std::ops::Index<I>,
    {
        <Self::Storage as AnyStorage>::map(self.read(), |v| v.index(index))
    }
    #[doc(hidden)]
    fn deref_impl<'a>(&self) -> &'a dyn Fn() -> Self::Target
    where
        Self: Sized + 'a,
        Self::Target: Clone,
    {
        // https://github.com/dtolnay/case-studies/tree/master/callable-types
        // First we create a closure that captures something with the Same in memory layout as Self (MaybeUninit<Self>).
        let uninit_callable = MaybeUninit::<Self>::uninit();
        // Then move that value into the closure. We assume that the closure now has a in memory layout of Self.
        let uninit_closure = move || Self::read(unsafe { &*uninit_callable.as_ptr() }).clone();
        // Check that the size of the closure is the same as the size of Self in case the compiler changed the layout of the closure.
        let size_of_closure = std::mem::size_of_val(&uninit_closure);
        assert_eq!(size_of_closure, std::mem::size_of::<Self>());
        // Then cast the lifetime of the closure to the lifetime of &self.
        fn cast_lifetime<'a, T>(_a: &T, b: &'a T) -> &'a T {
            b
        }
        let reference_to_closure = cast_lifetime(
            {
                // The real closure that we will never use.
                &uninit_closure
            },
            // We transmute self into a reference to the closure. This is safe because we know that the closure has the same memory layout as Self so &Closure == &Self.
            unsafe { std::mem::transmute(self) },
        );
        // Cast the closure to a trait object.
        reference_to_closure as &_
    }
}
/// An extension trait for Readable<Vec<T>> that provides some convenience methods.
pub trait ReadableVecExt<T: 'static>: Readable<Target = Vec<T>> {
    /// Returns the length of the inner vector.
    #[track_caller]
    fn len(&self) -> usize {
        self.with(|v| v.len())
    }
    /// Returns true if the inner vector is empty.
    #[track_caller]
    fn is_empty(&self) -> bool {
        self.with(|v| v.is_empty())
    }
    /// Get the first element of the inner vector.
    #[track_caller]
    fn first(&self) -> Option<ReadableRef<Self, T>> {
        <Self::Storage as AnyStorage>::try_map(self.read(), |v| v.first())
    }
    /// Get the last element of the inner vector.
    #[track_caller]
    fn last(&self) -> Option<ReadableRef<Self, T>> {
        <Self::Storage as AnyStorage>::try_map(self.read(), |v| v.last())
    }
    /// Get the element at the given index of the inner vector.
    #[track_caller]
    fn get(&self, index: usize) -> Option<ReadableRef<Self, T>> {
        <Self::Storage as AnyStorage>::try_map(self.read(), |v| v.get(index))
    }
    /// Get an iterator over the values of the inner vector.
    #[track_caller]
    fn iter(&self) -> ReadableValueIterator<'_, Self>
    where
        Self: Sized,
    {
        ReadableValueIterator {
            index: 0,
            value: self,
        }
    }
}
/// An iterator over the values of a `Readable<Vec<T>>`.
pub struct ReadableValueIterator<'a, R> {
    index: usize,
    value: &'a R,
}
impl<'a, T: 'static, R: Readable<Target = Vec<T>>> Iterator for ReadableValueIterator<'a, R> {
    type Item = ReadableRef<R, T>;
    fn next(&mut self) -> Option<Self::Item> {
        let index = self.index;
        self.index += 1;
        self.value.get(index)
    }
}
impl<T, R> ReadableVecExt<T> for R
where
    T: 'static,
    R: Readable<Target = Vec<T>>,
{
}
/// An extension trait for Readable<Option<T>> that provides some convenience methods.
pub trait ReadableOptionExt<T: 'static>: Readable<Target = Option<T>> {
    /// Unwraps the inner value and clones it.
    #[track_caller]
    fn unwrap(&self) -> T
    where
        T: Clone,
    {
        self.as_ref().unwrap().clone()
    }
    /// Attempts to read the inner value of the Option.
    #[track_caller]
    fn as_ref(&self) -> Option<ReadableRef<Self, T>> {
        <Self::Storage as AnyStorage>::try_map(self.read(), |v| v.as_ref())
    }
}
impl<T, R> ReadableOptionExt<T> for R
where
    T: 'static,
    R: Readable<Target = Option<T>>,
{
}