1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
use crate::innerlude::{remove_future, spawn, Runtime};
use crate::ScopeId;
use futures_util::task::ArcWake;
use std::sync::Arc;
use std::task::Waker;
use std::{cell::Cell, future::Future};
use std::{cell::RefCell, rc::Rc};
use std::{pin::Pin, task::Poll};

/// A task's unique identifier.
///
/// `Task` is a unique identifier for a task that has been spawned onto the runtime. It can be used to cancel the task
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub struct Task(pub(crate) usize);

impl Task {
    /// Start a new future on the same thread as the rest of the VirtualDom.
    ///
    /// This future will not contribute to suspense resolving, so you should primarily use this for reacting to changes
    /// and long running tasks.
    ///
    /// Whenever the component that owns this future is dropped, the future will be dropped as well.
    ///
    /// Spawning a future onto the root scope will cause it to be dropped when the root component is dropped - which
    /// will only occur when the VirtualDom itself has been dropped.
    pub fn new(task: impl Future<Output = ()> + 'static) -> Self {
        spawn(task)
    }

    /// Drop the task immediately.
    ///
    /// This does not abort the task, so you'll want to wrap it in an abort handle if that's important to you
    pub fn cancel(self) {
        remove_future(self);
    }

    /// Pause the task.
    pub fn pause(&self) {
        self.set_active(false);
    }

    /// Resume the task.
    pub fn resume(&self) {
        self.set_active(true);
    }

    /// Check if the task is paused.
    pub fn paused(&self) -> bool {
        Runtime::with(|rt| {
            if let Some(task) = rt.tasks.borrow().get(self.0) {
                !task.active.get()
            } else {
                false
            }
        })
        .unwrap_or_default()
    }

    /// Wake the task.
    pub fn wake(&self) {
        Runtime::with(|rt| _ = rt.sender.unbounded_send(SchedulerMsg::TaskNotified(*self)));
    }

    /// Poll the task immediately.
    pub fn poll_now(&self) -> Poll<()> {
        Runtime::with(|rt| rt.handle_task_wakeup(*self)).unwrap()
    }

    /// Set the task as active or paused.
    pub fn set_active(&self, active: bool) {
        Runtime::with(|rt| {
            if let Some(task) = rt.tasks.borrow().get(self.0) {
                let was_active = task.active.replace(active);
                if !was_active && active {
                    _ = rt.sender.unbounded_send(SchedulerMsg::TaskNotified(*self));
                }
            }
        });
    }
}

impl Runtime {
    /// Start a new future on the same thread as the rest of the VirtualDom.
    ///
    /// This future will not contribute to suspense resolving, so you should primarily use this for reacting to changes
    /// and long running tasks.
    ///
    /// Whenever the component that owns this future is dropped, the future will be dropped as well.
    ///
    /// Spawning a future onto the root scope will cause it to be dropped when the root component is dropped - which
    /// will only occur when the VirtualDom itself has been dropped.
    pub fn spawn(&self, scope: ScopeId, task: impl Future<Output = ()> + 'static) -> Task {
        // Insert the task, temporarily holding a borrow on the tasks map
        let (task, task_id) = {
            let mut tasks = self.tasks.borrow_mut();

            let entry = tasks.vacant_entry();
            let task_id = Task(entry.key());

            let task = Rc::new(LocalTask {
                scope,
                active: Cell::new(true),
                parent: self.current_task(),
                task: RefCell::new(Box::pin(task)),
                waker: futures_util::task::waker(Arc::new(LocalTaskHandle {
                    id: task_id,
                    tx: self.sender.clone(),
                })),
            });

            entry.insert(task.clone());

            (task, task_id)
        };

        // Get a borrow on the task, holding no borrows on the tasks map
        debug_assert!(self.tasks.try_borrow_mut().is_ok());
        debug_assert!(task.task.try_borrow_mut().is_ok());

        self.sender
            .unbounded_send(SchedulerMsg::TaskNotified(task_id))
            .expect("Scheduler should exist");

        task_id
    }

    /// Get the currently running task
    pub fn current_task(&self) -> Option<Task> {
        self.current_task.get()
    }

    /// Get the parent task of the given task, if it exists
    pub fn parent_task(&self, task: Task) -> Option<Task> {
        self.tasks.borrow().get(task.0)?.parent
    }

    pub(crate) fn handle_task_wakeup(&self, id: Task) -> Poll<()> {
        debug_assert!(Runtime::current().is_some(), "Must be in a dioxus runtime");

        let task = self.tasks.borrow().get(id.0).cloned();

        // The task was removed from the scheduler, so we can just ignore it
        let Some(task) = task else {
            return Poll::Ready(());
        };

        // If a task woke up but is paused, we can just ignore it
        if !task.active.get() {
            return Poll::Pending;
        }

        let mut cx = std::task::Context::from_waker(&task.waker);

        // update the scope stack
        self.scope_stack.borrow_mut().push(task.scope);
        self.rendering.set(false);
        self.current_task.set(Some(id));

        let poll_result = task.task.borrow_mut().as_mut().poll(&mut cx);

        if poll_result.is_ready() {
            // Remove it from the scope so we dont try to double drop it when the scope dropes
            self.get_state(task.scope)
                .unwrap()
                .spawned_tasks
                .borrow_mut()
                .remove(&id);

            // Remove it from the scheduler
            self.tasks.borrow_mut().try_remove(id.0);
        }

        // Remove the scope from the stack
        self.scope_stack.borrow_mut().pop();
        self.rendering.set(true);
        self.current_task.set(None);

        poll_result
    }

    /// Drop the future with the given TaskId
    ///
    /// This does not abort the task, so you'll want to wrap it in an abort handle if that's important to you
    pub(crate) fn remove_task(&self, id: Task) -> Option<Rc<LocalTask>> {
        self.tasks.borrow_mut().try_remove(id.0)
    }
}

/// the task itself is the waker
pub(crate) struct LocalTask {
    scope: ScopeId,
    parent: Option<Task>,
    task: RefCell<Pin<Box<dyn Future<Output = ()> + 'static>>>,
    waker: Waker,
    active: Cell<bool>,
}

/// The type of message that can be sent to the scheduler.
///
/// These messages control how the scheduler will process updates to the UI.
#[derive(Debug)]
pub(crate) enum SchedulerMsg {
    /// Immediate updates from Components that mark them as dirty
    Immediate(ScopeId),

    /// A task has woken and needs to be progressed
    TaskNotified(Task),
}

struct LocalTaskHandle {
    id: Task,
    tx: futures_channel::mpsc::UnboundedSender<SchedulerMsg>,
}

impl ArcWake for LocalTaskHandle {
    fn wake_by_ref(arc_self: &Arc<Self>) {
        _ = arc_self
            .tx
            .unbounded_send(SchedulerMsg::TaskNotified(arc_self.id));
    }
}