1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
//! # VirtualDom Implementation for Rust
//!
//! This module provides the primary mechanics to create a hook-based, concurrent VDOM for Rust.
use crate::innerlude::*;
use futures_channel::mpsc::{UnboundedReceiver, UnboundedSender};
use futures_util::{future::poll_fn, StreamExt};
use fxhash::FxHashSet;
use indexmap::IndexSet;
use std::{collections::VecDeque, iter::FromIterator, task::Poll};
/// A virtual node s ystem that progresses user events and diffs UI trees.
///
///
/// ## Guide
///
/// Components are defined as simple functions that take [`Scope`] and return an [`Element`].
///
/// ```rust, ignore
/// #[derive(Props, PartialEq)]
/// struct AppProps {
/// title: String
/// }
///
/// fn App(cx: Scope<AppProps>) -> Element {
/// cx.render(rsx!(
/// div {"hello, {cx.props.title}"}
/// ))
/// }
/// ```
///
/// Components may be composed to make complex apps.
///
/// ```rust, ignore
/// fn App(cx: Scope<AppProps>) -> Element {
/// cx.render(rsx!(
/// NavBar { routes: ROUTES }
/// Title { "{cx.props.title}" }
/// Footer {}
/// ))
/// }
/// ```
///
/// To start an app, create a [`VirtualDom`] and call [`VirtualDom::rebuild`] to get the list of edits required to
/// draw the UI.
///
/// ```rust, ignore
/// let mut vdom = VirtualDom::new(App);
/// let edits = vdom.rebuild();
/// ```
///
/// To inject UserEvents into the VirtualDom, call [`VirtualDom::get_scheduler_channel`] to get access to the scheduler.
///
/// ```rust, ignore
/// let channel = vdom.get_scheduler_channel();
/// channel.send_unbounded(SchedulerMsg::UserEvent(UserEvent {
/// // ...
/// }))
/// ```
///
/// While waiting for UserEvents to occur, call [`VirtualDom::wait_for_work`] to poll any futures inside the VirtualDom.
///
/// ```rust, ignore
/// vdom.wait_for_work().await;
/// ```
///
/// Once work is ready, call [`VirtualDom::work_with_deadline`] to compute the differences between the previous and
/// current UI trees. This will return a [`Mutations`] object that contains Edits, Effects, and NodeRefs that need to be
/// handled by the renderer.
///
/// ```rust, ignore
/// let mutations = vdom.work_with_deadline(|| false);
/// for edit in mutations {
/// apply(edit);
/// }
/// ```
///
/// ## Building an event loop around Dioxus:
///
/// Putting everything together, you can build an event loop around Dioxus by using the methods outlined above.
///
/// ```rust, ignore
/// fn App(cx: Scope) -> Element {
/// cx.render(rsx!{
/// div { "Hello World" }
/// })
/// }
///
/// async fn main() {
/// let mut dom = VirtualDom::new(App);
///
/// let mut inital_edits = dom.rebuild();
/// apply_edits(inital_edits);
///
/// loop {
/// dom.wait_for_work().await;
/// let frame_timeout = TimeoutFuture::new(Duration::from_millis(16));
/// let deadline = || (&mut frame_timeout).now_or_never();
/// let edits = dom.run_with_deadline(deadline).await;
/// apply_edits(edits);
/// }
/// }
/// ```
pub struct VirtualDom {
scopes: ScopeArena,
pending_messages: VecDeque<SchedulerMsg>,
dirty_scopes: IndexSet<ScopeId>,
channel: (
UnboundedSender<SchedulerMsg>,
UnboundedReceiver<SchedulerMsg>,
),
}
#[derive(Debug)]
pub enum SchedulerMsg {
// events from the host
Event(UserEvent),
// setstate
Immediate(ScopeId),
// an async task pushed from an event handler (or just spawned)
NewTask(ScopeId),
}
// Methods to create the VirtualDom
impl VirtualDom {
/// Create a new VirtualDom with a component that does not have special props.
///
/// # Description
///
/// Later, the props can be updated by calling "update" with a new set of props, causing a set of re-renders.
///
/// This is useful when a component tree can be driven by external state (IE SSR) but it would be too expensive
/// to toss out the entire tree.
///
///
/// # Example
/// ```rust, ignore
/// fn Example(cx: Scope) -> Element {
/// cx.render(rsx!( div { "hello world" } ))
/// }
///
/// let dom = VirtualDom::new(Example);
/// ```
///
/// Note: the VirtualDom is not progressed, you must either "run_with_deadline" or use "rebuild" to progress it.
pub fn new(root: Component) -> Self {
Self::new_with_props(root, ())
}
/// Create a new VirtualDom with the given properties for the root component.
///
/// # Description
///
/// Later, the props can be updated by calling "update" with a new set of props, causing a set of re-renders.
///
/// This is useful when a component tree can be driven by external state (IE SSR) but it would be too expensive
/// to toss out the entire tree.
///
///
/// # Example
/// ```rust, ignore
/// #[derive(PartialEq, Props)]
/// struct SomeProps {
/// name: &'static str
/// }
///
/// fn Example(cx: Scope<SomeProps>) -> Element {
/// cx.render(rsx!{ div{ "hello {cx.props.name}" } })
/// }
///
/// let dom = VirtualDom::new(Example);
/// ```
///
/// Note: the VirtualDom is not progressed on creation. You must either "run_with_deadline" or use "rebuild" to progress it.
///
/// ```rust, ignore
/// let mut dom = VirtualDom::new_with_props(Example, SomeProps { name: "jane" });
/// let mutations = dom.rebuild();
/// ```
pub fn new_with_props<P>(root: Component<P>, root_props: P) -> Self
where
P: 'static,
{
Self::new_with_props_and_scheduler(
root,
root_props,
futures_channel::mpsc::unbounded::<SchedulerMsg>(),
)
}
/// Launch the VirtualDom, but provide your own channel for receiving and sending messages into the scheduler
///
/// This is useful when the VirtualDom must be driven from outside a thread and it doesn't make sense to wait for the
/// VirtualDom to be created just to retrieve its channel receiver.
///
/// ```rust, ignore
/// let channel = futures_channel::mpsc::unbounded();
/// let dom = VirtualDom::new_with_scheduler(Example, (), channel);
/// ```
pub fn new_with_props_and_scheduler<P: 'static>(
root: Component<P>,
root_props: P,
channel: (
UnboundedSender<SchedulerMsg>,
UnboundedReceiver<SchedulerMsg>,
),
) -> Self {
let scopes = ScopeArena::new(channel.0.clone());
scopes.new_with_key(
root as *const _,
Box::new(VComponentProps {
props: root_props,
memo: |_a, _b| unreachable!("memo on root will neve be run"),
render_fn: root,
}),
None,
ElementId(0),
0,
);
Self {
scopes,
channel,
dirty_scopes: IndexSet::from_iter([ScopeId(0)]),
pending_messages: VecDeque::new(),
}
}
/// Get the [`Scope`] for the root component.
///
/// This is useful for traversing the tree from the root for heuristics or alternsative renderers that use Dioxus
/// directly.
///
/// This method is equivalent to calling `get_scope(ScopeId(0))`
///
/// # Example
///
/// ```rust, ignore
/// let mut dom = VirtualDom::new(example);
/// dom.rebuild();
///
///
/// ```
pub fn base_scope(&self) -> &ScopeState {
self.get_scope(ScopeId(0)).unwrap()
}
/// Get the [`ScopeState`] for a component given its [`ScopeId`]
///
/// # Example
///
///
///
pub fn get_scope(&self, id: ScopeId) -> Option<&ScopeState> {
self.scopes.get_scope(id)
}
/// Get an [`UnboundedSender`] handle to the channel used by the scheduler.
///
/// # Example
///
/// ```rust, ignore
/// let dom = VirtualDom::new(App);
/// let sender = dom.get_scheduler_channel();
/// ```
pub fn get_scheduler_channel(&self) -> UnboundedSender<SchedulerMsg> {
self.channel.0.clone()
}
/// Try to get an element from its ElementId
pub fn get_element(&self, id: ElementId) -> Option<&VNode> {
self.scopes.get_element(id)
}
/// Add a new message to the scheduler queue directly.
///
///
/// This method makes it possible to send messages to the scheduler from outside the VirtualDom without having to
/// call `get_schedule_channel` and then `send`.
///
/// # Example
/// ```rust, ignore
/// let dom = VirtualDom::new(App);
/// dom.handle_message(SchedulerMsg::Immediate(ScopeId(0)));
/// ```
pub fn handle_message(&mut self, msg: SchedulerMsg) {
if self.channel.0.unbounded_send(msg).is_ok() {
self.process_all_messages();
}
}
/// Check if the [`VirtualDom`] has any pending updates or work to be done.
///
/// # Example
///
/// ```rust, ignore
/// let dom = VirtualDom::new(App);
///
/// // the dom is "dirty" when it is started and must be rebuilt to get the first render
/// assert!(dom.has_any_work());
/// ```
pub fn has_work(&self) -> bool {
!(self.dirty_scopes.is_empty() && self.pending_messages.is_empty())
}
/// Wait for the scheduler to have any work.
///
/// This method polls the internal future queue *and* the scheduler channel.
/// To add work to the VirtualDom, insert a message via the scheduler channel.
///
/// This lets us poll async tasks during idle periods without blocking the main thread.
///
/// # Example
///
/// ```rust, ignore
/// let dom = VirtualDom::new(App);
/// let sender = dom.get_scheduler_channel();
/// ```
pub async fn wait_for_work(&mut self) {
loop {
if !self.dirty_scopes.is_empty() && self.pending_messages.is_empty() {
break;
}
if self.pending_messages.is_empty() {
if self.scopes.tasks.has_tasks() {
use futures_util::future::{select, Either};
let scopes = &mut self.scopes;
let task_poll = poll_fn(|cx| {
//
let mut any_pending = false;
let mut tasks = scopes.tasks.tasks.borrow_mut();
let mut to_remove = vec![];
// this would be better served by retain
for (id, task) in tasks.iter_mut() {
if task.as_mut().poll(cx).is_ready() {
to_remove.push(*id);
} else {
any_pending = true;
}
}
for id in to_remove {
tasks.remove(&id);
}
// Resolve the future if any singular task is ready
match any_pending {
true => Poll::Pending,
false => Poll::Ready(()),
}
});
match select(task_poll, self.channel.1.next()).await {
Either::Left((_, _)) => {}
Either::Right((msg, _)) => self.pending_messages.push_front(msg.unwrap()),
}
} else {
self.pending_messages
.push_front(self.channel.1.next().await.unwrap());
}
}
// Move all the messages into the queue
self.process_all_messages();
}
}
/// Manually kick the VirtualDom to process any
pub fn process_all_messages(&mut self) {
// clear out the scheduler queue
while let Ok(Some(msg)) = self.channel.1.try_next() {
self.pending_messages.push_front(msg);
}
// process all the messages pulled from the queue
while let Some(msg) = self.pending_messages.pop_back() {
self.process_message(msg);
}
}
pub fn process_message(&mut self, msg: SchedulerMsg) {
match msg {
SchedulerMsg::NewTask(_id) => {
// uh, not sure? I think end up re-polling it anyways
}
SchedulerMsg::Event(event) => {
if let Some(element) = event.element {
self.scopes.call_listener_with_bubbling(event, element);
}
}
SchedulerMsg::Immediate(s) => {
self.dirty_scopes.insert(s);
}
}
}
/// Run the virtualdom with a deadline.
///
/// This method will perform any outstanding diffing work and try to return as many mutations as possible before the
/// deadline is reached. This method accepts a closure that returns `true` if the deadline has been reached. To wrap
/// your future into a deadline, consider the `now_or_never` method from `future_utils`.
///
/// ```rust, ignore
/// let mut vdom = VirtualDom::new(App);
///
/// let timeout = TimeoutFuture::from_ms(16);
/// let deadline = || (&mut timeout).now_or_never();
///
/// let mutations = vdom.work_with_deadline(deadline);
/// ```
///
/// This method is useful when needing to schedule the virtualdom around other tasks on the main thread to prevent
/// "jank". It will try to finish whatever work it has by the deadline to free up time for other work.
///
/// If the work is not finished by the deadline, Dioxus will store it for later and return when work_with_deadline
/// is called again. This means you can ensure some level of free time on the VirtualDom's thread during the work phase.
///
/// For use in the web, it is expected that this method will be called to be executed during "idle times" and the
/// mutations to be applied during the "paint times" IE "animation frames". With this strategy, it is possible to craft
/// entirely jank-free applications that perform a ton of work.
///
/// In general use, Dioxus is plenty fast enough to not need to worry about this.
///
/// # Example
///
/// ```rust, ignore
/// fn App(cx: Scope) -> Element {
/// cx.render(rsx!( div {"hello"} ))
/// }
///
/// let mut dom = VirtualDom::new(App);
///
/// loop {
/// let mut timeout = TimeoutFuture::from_ms(16);
/// let deadline = move || (&mut timeout).now_or_never();
///
/// let mutations = dom.run_with_deadline(deadline).await;
///
/// apply_mutations(mutations);
/// }
/// ```
pub fn work_with_deadline(&mut self, mut deadline: impl FnMut() -> bool) -> Vec<Mutations> {
let mut committed_mutations = vec![];
while !self.dirty_scopes.is_empty() {
let scopes = &self.scopes;
let mut diff_state = DiffState::new(scopes);
let mut ran_scopes = FxHashSet::default();
// Sort the scopes by height. Theoretically, we'll de-duplicate scopes by height
self.dirty_scopes
.retain(|id| scopes.get_scope(*id).is_some());
self.dirty_scopes.sort_by(|a, b| {
let h1 = scopes.get_scope(*a).unwrap().height;
let h2 = scopes.get_scope(*b).unwrap().height;
h1.cmp(&h2).reverse()
});
if let Some(scopeid) = self.dirty_scopes.pop() {
if !ran_scopes.contains(&scopeid) {
ran_scopes.insert(scopeid);
self.scopes.run_scope(scopeid);
let (old, new) = (self.scopes.wip_head(scopeid), self.scopes.fin_head(scopeid));
diff_state.stack.push(DiffInstruction::Diff { new, old });
diff_state.stack.scope_stack.push(scopeid);
let scope = scopes.get_scope(scopeid).unwrap();
diff_state.stack.element_stack.push(scope.container);
}
}
if diff_state.work(&mut deadline) {
let DiffState { mutations, .. } = diff_state;
for scope in &mutations.dirty_scopes {
self.dirty_scopes.remove(scope);
}
committed_mutations.push(mutations);
} else {
// leave the work in an incomplete state
//
// todo: we should store the edits and re-apply them later
// for now, we just dump the work completely (threadsafe)
return committed_mutations;
}
}
committed_mutations
}
/// Performs a *full* rebuild of the virtual dom, returning every edit required to generate the actual dom from scratch.
///
/// The diff machine expects the RealDom's stack to be the root of the application.
///
/// Tasks will not be polled with this method, nor will any events be processed from the event queue. Instead, the
/// root component will be ran once and then diffed. All updates will flow out as mutations.
///
/// All state stored in components will be completely wiped away.
///
/// # Example
/// ```rust, ignore
/// static App: Component = |cx| cx.render(rsx!{ "hello world" });
/// let mut dom = VirtualDom::new();
/// let edits = dom.rebuild();
///
/// apply_edits(edits);
/// ```
pub fn rebuild(&mut self) -> Mutations {
let scope_id = ScopeId(0);
let mut diff_state = DiffState::new(&self.scopes);
self.scopes.run_scope(scope_id);
diff_state
.stack
.create_node(self.scopes.fin_head(scope_id), MountType::Append);
diff_state.stack.element_stack.push(ElementId(0));
diff_state.stack.scope_stack.push(scope_id);
diff_state.work(|| false);
diff_state.mutations
}
/// Compute a manual diff of the VirtualDom between states.
///
/// This can be useful when state inside the DOM is remotely changed from the outside, but not propagated as an event.
///
/// In this case, every component will be diffed, even if their props are memoized. This method is intended to be used
/// to force an update of the DOM when the state of the app is changed outside of the app.
///
/// To force a reflow of the entire VirtualDom, use `ScopeId(0)` as the scope_id.
///
/// # Example
/// ```rust, ignore
/// #[derive(PartialEq, Props)]
/// struct AppProps {
/// value: Shared<&'static str>,
/// }
///
/// static App: Component<AppProps> = |cx| {
/// let val = cx.value.borrow();
/// cx.render(rsx! { div { "{val}" } })
/// };
///
/// let value = Rc::new(RefCell::new("Hello"));
/// let mut dom = VirtualDom::new_with_props(App, AppProps { value: value.clone(), });
///
/// let _ = dom.rebuild();
///
/// *value.borrow_mut() = "goodbye";
///
/// let edits = dom.diff();
/// ```
pub fn hard_diff(&mut self, scope_id: ScopeId) -> Mutations {
let mut diff_machine = DiffState::new(&self.scopes);
self.scopes.run_scope(scope_id);
let (old, new) = (
diff_machine.scopes.wip_head(scope_id),
diff_machine.scopes.fin_head(scope_id),
);
diff_machine.force_diff = true;
diff_machine.stack.push(DiffInstruction::Diff { old, new });
diff_machine.stack.scope_stack.push(scope_id);
let scope = diff_machine.scopes.get_scope(scope_id).unwrap();
diff_machine.stack.element_stack.push(scope.container);
diff_machine.work(|| false);
diff_machine.mutations
}
/// Renders an `rsx` call into the Base Scope's allocator.
///
/// Useful when needing to render nodes from outside the VirtualDom, such as in a test.
///
/// ```rust, ignore
/// fn Base(cx: Scope) -> Element {
/// rsx!(cx, div {})
/// }
///
/// let dom = VirtualDom::new(Base);
/// let nodes = dom.render_nodes(rsx!("div"));
/// ```
pub fn render_vnodes<'a>(&'a self, lazy_nodes: LazyNodes<'a, '_>) -> &'a VNode<'a> {
let scope = self.scopes.get_scope(ScopeId(0)).unwrap();
let frame = scope.wip_frame();
let factory = NodeFactory { bump: &frame.bump };
let node = lazy_nodes.call(factory);
frame.bump.alloc(node)
}
/// Renders an `rsx` call into the Base Scope's allocator.
///
/// Useful when needing to render nodes from outside the VirtualDom, such as in a test.
///
/// ```rust, ignore
/// fn Base(cx: Scope) -> Element {
/// rsx!(cx, div {})
/// }
///
/// let dom = VirtualDom::new(Base);
/// let nodes = dom.render_nodes(rsx!("div"));
/// ```
pub fn diff_vnodes<'a>(&'a self, old: &'a VNode<'a>, new: &'a VNode<'a>) -> Mutations<'a> {
let mut machine = DiffState::new(&self.scopes);
machine.stack.push(DiffInstruction::Diff { new, old });
machine.stack.element_stack.push(ElementId(0));
machine.stack.scope_stack.push(ScopeId(0));
machine.work(|| false);
machine.mutations
}
/// Renders an `rsx` call into the Base Scope's allocator.
///
/// Useful when needing to render nodes from outside the VirtualDom, such as in a test.
///
///
/// ```rust, ignore
/// fn Base(cx: Scope) -> Element {
/// rsx!(cx, div {})
/// }
///
/// let dom = VirtualDom::new(Base);
/// let nodes = dom.render_nodes(rsx!("div"));
/// ```
pub fn create_vnodes<'a>(&'a self, nodes: LazyNodes<'a, '_>) -> Mutations<'a> {
let mut machine = DiffState::new(&self.scopes);
machine.stack.element_stack.push(ElementId(0));
machine
.stack
.create_node(self.render_vnodes(nodes), MountType::Append);
machine.work(|| false);
machine.mutations
}
/// Renders an `rsx` call into the Base Scopes's arena.
///
/// Useful when needing to diff two rsx! calls from outside the VirtualDom, such as in a test.
///
///
/// ```rust, ignore
/// fn Base(cx: Scope) -> Element {
/// rsx!(cx, div {})
/// }
///
/// let dom = VirtualDom::new(Base);
/// let nodes = dom.render_nodes(rsx!("div"));
/// ```
pub fn diff_lazynodes<'a>(
&'a self,
left: LazyNodes<'a, '_>,
right: LazyNodes<'a, '_>,
) -> (Mutations<'a>, Mutations<'a>) {
let (old, new) = (self.render_vnodes(left), self.render_vnodes(right));
let mut create = DiffState::new(&self.scopes);
create.stack.scope_stack.push(ScopeId(0));
create.stack.element_stack.push(ElementId(0));
create.stack.create_node(old, MountType::Append);
create.work(|| false);
let mut edit = DiffState::new(&self.scopes);
edit.stack.scope_stack.push(ScopeId(0));
edit.stack.element_stack.push(ElementId(0));
edit.stack.push(DiffInstruction::Diff { old, new });
edit.work(|| false);
(create.mutations, edit.mutations)
}
}
/*
Scopes and ScopeArenas are never dropped internally.
An app will always occupy as much memory as its biggest form.
This means we need to handle all specifics of drop *here*. It's easier
to reason about centralizing all the drop logic in one spot rather than scattered in each module.
Broadly speaking, we want to use the remove_nodes method to clean up *everything*
This will drop listeners, borrowed props, and hooks for all components.
We need to do this in the correct order - nodes at the very bottom must be dropped first to release
the borrow chain.
Once the contents of the tree have been cleaned up, we can finally clean up the
memory used by ScopeState itself.
questions:
should we build a vcomponent for the root?
- probably - yes?
- store the vcomponent in the root dom
- 1: Use remove_nodes to use the ensure_drop_safety pathway to safely drop the tree
- 2: Drop the ScopeState itself
*/
impl Drop for VirtualDom {
fn drop(&mut self) {
// the best way to drop the dom is to replace the root scope with a dud
// the diff infrastructure will then finish the rest
let scope = self.scopes.get_scope(ScopeId(0)).unwrap();
// todo: move the remove nodes method onto scopearena
// this will clear *all* scopes *except* the root scope
let mut machine = DiffState::new(&self.scopes);
machine.remove_nodes([scope.root_node()], false);
// Now, clean up the root scope
// safety: there are no more references to the root scope
let scope = unsafe { &mut *self.scopes.get_scope_raw(ScopeId(0)).unwrap() };
scope.reset();
// make sure there are no "live" components
for (_, scopeptr) in self.scopes.scopes.get_mut().drain() {
// safety: all scopes were made in the bump's allocator
// They are never dropped until now. The only way to drop is through Box.
let scope = unsafe { bumpalo::boxed::Box::from_raw(scopeptr) };
drop(scope);
}
for scopeptr in self.scopes.free_scopes.get_mut().drain(..) {
// safety: all scopes were made in the bump's allocator
// They are never dropped until now. The only way to drop is through Box.
let mut scope = unsafe { bumpalo::boxed::Box::from_raw(scopeptr) };
scope.reset();
drop(scope);
}
}
}
