1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
//! Support for storing lazy-nodes on the stack
//!
//! This module provides support for a type called `LazyNodes` which is a micro-heap located on the stack to make calls
//! to `rsx!` more efficient.
//!
//! To support returning rsx! from branches in match statements, we need to use dynamic dispatch on NodeFactory closures.
//!
//! This can be done either through boxing directly, or by using dynamic-sized-types and a custom allocator. In our case,
//! we build a tiny alloactor in the stack and allocate the closure into that.
//!
//! The logic for this was borrowed from <https://docs.rs/stack_dst/0.6.1/stack_dst/>. Unfortunately, this crate does not
//! support non-static closures, so we've implemented the core logic of `ValueA` in this module.

use crate::innerlude::{NodeFactory, VNode};
use std::mem;

/// A concrete type provider for closures that build VNode structures.
///
/// This struct wraps lazy structs that build VNode trees Normally, we cannot perform a blanket implementation over
/// closures, but if we wrap the closure in a concrete type, we can maintain separate implementations of IntoVNode.
///
///
/// ```rust, ignore
/// LazyNodes::new(|f| f.element("div", [], [], [] None))
/// ```
pub struct LazyNodes<'a, 'b> {
    inner: StackNodeStorage<'a, 'b>,
}

type StackHeapSize = [usize; 16];

enum StackNodeStorage<'a, 'b> {
    Stack(LazyStack),
    Heap(Box<dyn FnMut(Option<NodeFactory<'a>>) -> Option<VNode<'a>> + 'b>),
}

impl<'a, 'b> LazyNodes<'a, 'b> {
    pub fn new_some<F>(_val: F) -> Self
    where
        F: FnOnce(NodeFactory<'a>) -> VNode<'a> + 'b,
    {
        Self::new(_val)
    }

    /// force this call onto the stack
    pub fn new_boxed<F>(_val: F) -> Self
    where
        F: FnOnce(NodeFactory<'a>) -> VNode<'a> + 'b,
    {
        // there's no way to call FnOnce without a box, so we need to store it in a slot and use static dispatch
        let mut slot = Some(_val);

        let val = move |fac: Option<NodeFactory<'a>>| {
            let inner = slot.take().unwrap();
            fac.map(inner)
        };

        Self {
            inner: StackNodeStorage::Heap(Box::new(val)),
        }
    }

    pub fn new<F>(_val: F) -> Self
    where
        F: FnOnce(NodeFactory<'a>) -> VNode<'a> + 'b,
    {
        // there's no way to call FnOnce without a box, so we need to store it in a slot and use static dispatch
        let mut slot = Some(_val);

        let val = move |fac: Option<NodeFactory<'a>>| {
            let inner = slot.take().unwrap();
            fac.map(inner)
        };

        // miri does not know how to work with mucking directly into bytes
        if cfg!(miri) {
            Self {
                inner: StackNodeStorage::Heap(Box::new(val)),
            }
        } else {
            unsafe { LazyNodes::new_inner(val) }
        }
    }

    unsafe fn new_inner<F>(val: F) -> Self
    where
        F: FnMut(Option<NodeFactory<'a>>) -> Option<VNode<'a>> + 'b,
    {
        let mut ptr: *const _ = &val as &dyn FnMut(Option<NodeFactory<'a>>) -> Option<VNode<'a>>;

        assert_eq!(
            ptr as *const u8, &val as *const _ as *const u8,
            "MISUSE: Closure returned different pointer"
        );
        assert_eq!(
            std::mem::size_of_val(&*ptr),
            std::mem::size_of::<F>(),
            "MISUSE: Closure returned a subset pointer"
        );

        let words = ptr_as_slice(&mut ptr);
        assert!(
            words[0] == &val as *const _ as usize,
            "BUG: Pointer layout is not (data_ptr, info...)"
        );

        // - Ensure that Self is aligned same as data requires
        assert!(
            std::mem::align_of::<F>() <= std::mem::align_of::<Self>(),
            "TODO: Enforce alignment >{} (requires {})",
            std::mem::align_of::<Self>(),
            std::mem::align_of::<F>()
        );

        let info = &words[1..];
        let data = words[0] as *mut ();
        let size = mem::size_of::<F>();

        let stored_size = info.len() * mem::size_of::<usize>() + size;
        let max_size = mem::size_of::<StackHeapSize>();

        if stored_size > max_size {
            Self {
                inner: StackNodeStorage::Heap(Box::new(val)),
            }
        } else {
            let mut buf: StackHeapSize = StackHeapSize::default();

            assert!(info.len() + round_to_words(size) <= buf.as_ref().len());

            // Place pointer information at the end of the region
            // - Allows the data to be at the start for alignment purposes
            {
                let info_ofs = buf.as_ref().len() - info.len();
                let info_dst = &mut buf.as_mut()[info_ofs..];
                for (d, v) in Iterator::zip(info_dst.iter_mut(), info.iter()) {
                    *d = *v;
                }
            }

            let src_ptr = data as *const u8;
            let dataptr = buf.as_mut()[..].as_mut_ptr() as *mut u8;
            for i in 0..size {
                *dataptr.add(i) = *src_ptr.add(i);
            }

            std::mem::forget(val);

            Self {
                inner: StackNodeStorage::Stack(LazyStack {
                    _align: [],
                    buf,
                    dropped: false,
                }),
            }
        }
    }

    pub fn call(self, f: NodeFactory<'a>) -> VNode<'a> {
        match self.inner {
            StackNodeStorage::Heap(mut lazy) => lazy(Some(f)).unwrap(),
            StackNodeStorage::Stack(mut stack) => stack.call(f),
        }
    }
}

struct LazyStack {
    _align: [u64; 0],
    buf: StackHeapSize,
    dropped: bool,
}

impl LazyStack {
    fn call<'a>(&mut self, f: NodeFactory<'a>) -> VNode<'a> {
        let LazyStack { buf, .. } = self;
        let data = buf.as_ref();

        let info_size =
            mem::size_of::<*mut dyn FnMut(Option<NodeFactory<'a>>) -> Option<VNode<'a>>>()
                / mem::size_of::<usize>()
                - 1;

        let info_ofs = data.len() - info_size;

        let g: *mut dyn FnMut(Option<NodeFactory<'a>>) -> Option<VNode<'a>> =
            unsafe { make_fat_ptr(data[..].as_ptr() as usize, &data[info_ofs..]) };

        self.dropped = true;

        let clos = unsafe { &mut *g };
        clos(Some(f)).unwrap()
    }
}
impl Drop for LazyStack {
    fn drop(&mut self) {
        if !self.dropped {
            let LazyStack { buf, .. } = self;
            let data = buf.as_ref();

            let info_size = mem::size_of::<
                *mut dyn FnMut(Option<NodeFactory<'_>>) -> Option<VNode<'_>>,
            >() / mem::size_of::<usize>()
                - 1;

            let info_ofs = data.len() - info_size;

            let g: *mut dyn FnMut(Option<NodeFactory<'_>>) -> Option<VNode<'_>> =
                unsafe { make_fat_ptr(data[..].as_ptr() as usize, &data[info_ofs..]) };

            self.dropped = true;

            let clos = unsafe { &mut *g };
            clos(None);
        }
    }
}

/// Obtain mutable access to a pointer's words
fn ptr_as_slice<T>(ptr: &mut T) -> &mut [usize] {
    assert!(mem::size_of::<T>() % mem::size_of::<usize>() == 0);
    let words = mem::size_of::<T>() / mem::size_of::<usize>();
    // SAFE: Points to valid memory (a raw pointer)
    unsafe { core::slice::from_raw_parts_mut(ptr as *mut _ as *mut usize, words) }
}

/// Re-construct a fat pointer
unsafe fn make_fat_ptr<T: ?Sized>(data_ptr: usize, meta_vals: &[usize]) -> *mut T {
    let mut rv = mem::MaybeUninit::<*mut T>::uninit();
    {
        let s = ptr_as_slice(&mut rv);
        s[0] = data_ptr;
        s[1..].copy_from_slice(meta_vals);
    }
    let rv = rv.assume_init();
    assert_eq!(rv as *const (), data_ptr as *const ());
    rv
}

fn round_to_words(len: usize) -> usize {
    (len + mem::size_of::<usize>() - 1) / mem::size_of::<usize>()
}

#[test]
fn it_works() {
    let bump = bumpalo::Bump::new();

    let factory = NodeFactory { bump: &bump };

    let caller = LazyNodes::new_some(|f| {
        //
        f.text(format_args!("hello world!"))
    });
    let g = caller.call(factory);

    dbg!(g);
}

#[test]
fn it_drops() {
    use std::rc::Rc;
    let bump = bumpalo::Bump::new();

    let factory = NodeFactory { bump: &bump };

    struct DropInner {
        id: i32,
    }
    impl Drop for DropInner {
        fn drop(&mut self) {
            log::debug!("dropping inner");
        }
    }
    let val = Rc::new(10);

    let caller = {
        let it = (0..10)
            .map(|i| {
                let val = val.clone();

                LazyNodes::new_some(move |f| {
                    log::debug!("hell closure");
                    let inner = DropInner { id: i };
                    f.text(format_args!("hello world {:?}, {:?}", inner.id, val))
                })
            })
            .collect::<Vec<_>>();

        LazyNodes::new_some(|f| {
            log::debug!("main closure");
            f.fragment_from_iter(it)
        })
    };

    let _ = caller.call(factory);
    assert_eq!(Rc::strong_count(&val), 1);
}