1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
//! Utilities for processing the ASTs provided by `tree_sitter`
//!
//! These methods handle preprocessing the input data so it can be fed into the diff engines to
//! compute diff data.

use logging_timer::time;
use serde::{Deserialize, Serialize};
use std::borrow::Cow;
use std::collections::HashSet;
use std::hash::{Hash, Hasher};
use std::ops::{Deref, DerefMut};
use std::{cell::RefCell, ops::Index, path::PathBuf};
use tree_sitter::Node as TSNode;
use tree_sitter::Point;
use tree_sitter::Tree as TSTree;
use unicode_segmentation as us;

#[cfg(test)]
use mockall::{automock, predicate::str};

/// A wrapper trait that exists so we can mock TS nodes.
#[cfg_attr(test, automock)]
trait TSNodeTrait {
    /// Return the kind string that corresponds to a node.
    fn kind(&self) -> &str;
}

/// The configuration options for processing tree-sitter output.
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq)]
#[serde(rename_all = "kebab-case", default)]
pub struct TreeSitterProcessor {
    /// Whether we should split the nodes graphemes.
    ///
    /// If this is disabled, then the direct tree-sitter nodes will be used and diffs will be less
    /// granular. This has the advantage of being faster and using less memory.
    pub split_graphemes: bool,

    /// The kinds of nodes to exclude from processing. This takes precedence over `include_kinds`.
    ///
    /// This is a set of strings that correspond to the tree sitter node types.
    pub exclude_kinds: Option<HashSet<String>>,

    /// The kinds of nodes to explicitly include when processing. The nodes specified here will be overridden by the
    /// nodes specified in `exclude_kinds`.
    ///
    /// This is a set of strings that correspond to the tree sitter node types.
    pub include_kinds: Option<HashSet<String>>,

    /// Whether to strip whitespace when processing node text.
    ///
    /// Whitespace includes whitespace characters and newlines. This can provide much more accurate
    /// diffs that do not account for line breaks. This is useful especially for more text heavy
    /// documents like markdown files.
    pub strip_whitespace: bool,
}

// TODO: if we want to do any string transformations we need to store Cow strings.
// Most strings won't be modified so it's fine to use a pointer. For the few we do
// modify we'll need to store the direct string.
// We should add some abstractions to do input processing.

impl Default for TreeSitterProcessor {
    fn default() -> Self {
        Self {
            split_graphemes: true,
            exclude_kinds: None,
            include_kinds: None,
            strip_whitespace: true,
        }
    }
}

#[derive(Debug)]
struct TSNodeWrapper<'a>(TSNode<'a>);

impl<'a> TSNodeTrait for TSNodeWrapper<'a> {
    fn kind(&self) -> &str {
        self.0.kind()
    }
}

impl TreeSitterProcessor {
    #[time("info", "ast::{}")]
    pub fn process<'a>(&self, tree: &'a TSTree, text: &'a str) -> Vec<Entry<'a>> {
        let ast_vector = from_ts_tree(tree, text);
        let iter = ast_vector
            .leaves
            .iter()
            .filter(|leaf| self.should_include_node(&TSNodeWrapper(leaf.reference)));
        // Splitting on graphemes generates a vector of entries instead of a direct mapping, which
        // is why we have the branching here
        if self.split_graphemes {
            iter.flat_map(|leaf| leaf.split_on_graphemes(self.strip_whitespace))
                .collect()
        } else {
            iter.map(|&x| self.process_leaf(x)).collect()
        }
    }

    /// Process a vector leaf and turn it into an [Entry].
    ///
    /// This applies input processing according to the user provided options.
    fn process_leaf<'a>(&self, leaf: VectorLeaf<'a>) -> Entry<'a> {
        let new_text = if self.strip_whitespace {
            // This includes newlines
            Cow::from(leaf.text.trim())
        } else {
            Cow::from(leaf.text)
        };

        Entry {
            reference: leaf.reference,
            text: new_text,
            start_position: leaf.reference.start_position(),
            end_position: leaf.reference.start_position(),
            kind_id: leaf.reference.kind_id(),
        }
    }

    /// A helper method to determine whether a node type should be filtered out based on the user's filtering
    /// preferences.
    ///
    /// This method will first check if the node has been specified for exclusion, which takes precedence. Then it will
    /// check if the node kind is explicitly included. If either the exclusion or inclusion sets aren't specified,
    /// then the filter will not be applied.
    fn should_include_node(&self, node: &dyn TSNodeTrait) -> bool {
        let should_exclude = self
            .exclude_kinds
            .as_ref()
            .is_some_and(|x| x.contains(node.kind()))
            || self
                .include_kinds
                .as_ref()
                .is_some_and(|x| !x.contains(node.kind()));
        !should_exclude
    }
}

/// Create a `DiffVector` from a `tree_sitter` tree
///
/// This method calls a helper function that does an in-order traversal of the tree and adds
/// leaf nodes to a vector
#[time("info", "ast::{}")]
fn from_ts_tree<'a>(tree: &'a TSTree, text: &'a str) -> Vector<'a> {
    let leaves = RefCell::new(Vec::new());
    build(&leaves, tree.root_node(), text);
    Vector {
        leaves: leaves.into_inner(),
        source_text: text,
    }
}

/// The leaves of an AST vector
///
/// This is used as an intermediate struct for flattening the tree structure.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct VectorLeaf<'a> {
    pub reference: TSNode<'a>,
    pub text: &'a str,
}

/// A proxy for (Point)[`tree_sitter::Point`] for [serde].
///
/// This is a copy of an external struct that we use with serde so we can create json objects with
/// serde.
#[derive(Serialize, Deserialize)]
#[serde(remote = "Point")]
struct PointWrapper {
    pub row: usize,
    pub column: usize,
}

/// A mapping between a tree-sitter node and the text it corresponds to
///
/// This is also all of the metadata the diff rendering interface has access to, and also defines
/// the data that will be output by the JSON serializer.
#[derive(Debug, Clone, Serialize)]
pub struct Entry<'node> {
    /// The node an entry in the diff vector refers to
    ///
    /// We keep a reference to the leaf node so that we can easily grab the text and other metadata
    /// surrounding the syntax
    #[serde(skip_serializing)]
    pub reference: TSNode<'node>,

    /// A reference to the text the node refers to
    ///
    /// This is different from the `source_text` that the [AstVector] refers to, as the
    /// entry only holds a reference to the specific range of text that the node covers.
    ///
    /// We use a [Cow] here instead of a direct string reference because we might have to rewrite
    /// the text based on input processing settings, but if we don't have to there's no need to
    /// allocate an extra string.
    pub text: Cow<'node, str>,

    /// The entry's start position in the document.
    #[serde(with = "PointWrapper")]
    pub start_position: Point,

    /// The entry's end position in the document.
    #[serde(with = "PointWrapper")]
    pub end_position: Point,

    /// The cached kind_id from the TSNode reference.
    ///
    /// Caching it here saves some time because it is queried repeatedly later. If we don't store
    /// it inline then we have to cross the FFI boundary which incurs some overhead.
    // PERF: Use cross language LTO to see if LLVM can optimize across the FFI boundary.
    pub kind_id: u16,
}

impl<'a> VectorLeaf<'a> {
    /// Split an entry into a vector of entries per grapheme.
    ///
    /// Each grapheme will get its own [Entry] struct. This method will resolve the
    /// indices/positioning of each grapheme from the `self.text` field.
    ///
    /// This effectively maps out the byte position for each node from the unicode text, accounting
    /// for both newlines and grapheme splits.
    fn split_on_graphemes(self, strip_whitespace: bool) -> Vec<Entry<'a>> {
        let mut entries: Vec<Entry<'a>> = Vec::new();

        // We have to split lines because newline characters might be in the text for a tree sitter
        // node. We try to split up each unicode grapheme and assign them a location in the text
        // with a row and column, so we need to make sure that we are properly resetting the column
        // offset for and offsetting the row for each new line in a tree sitter node's text.
        let lines = self.text.lines();

        for (line_offset, line) in lines.enumerate() {
            let indices: Vec<(usize, &str)> =
                us::UnicodeSegmentation::grapheme_indices(line, true).collect();
            entries.reserve(entries.len() + indices.len());

            for (idx, grapheme) in indices {
                // Every grapheme has to be at least one byte
                debug_assert!(!grapheme.is_empty());

                if strip_whitespace && grapheme.chars().all(char::is_whitespace) {
                    continue;
                }

                // We simply offset from the start position of the node if we are on the first
                // line, which implies no newline offset needs to be applied. If the line_offset is
                // more than 0, we know we've hit a newline so the starting position for the column
                // is 0, shifted over for the grapheme index.
                let start_column = if line_offset == 0 {
                    self.reference.start_position().column + idx
                } else {
                    idx
                };
                let row = self.reference.start_position().row + line_offset;
                let new_start_pos = Point {
                    row,
                    column: start_column,
                };
                let new_end_pos = Point {
                    row,
                    column: new_start_pos.column + grapheme.len(),
                };
                debug_assert!(new_start_pos.row <= new_end_pos.row);
                let entry = Entry {
                    reference: self.reference,
                    text: Cow::from(&line[idx..idx + grapheme.len()]),
                    start_position: new_start_pos,
                    end_position: new_end_pos,
                    kind_id: self.reference.kind_id(),
                };
                // We add the debug assert config here because there's no need to even get a
                // reference to the last element if we're not in debug mode.
                #[cfg(debug_assertions)]
                if let Some(last_entry) = entries.last() {
                    // Our invariant is that one of the following must hold true:
                    // 1. The last entry ended on a previous line (now we don't need to check the
                    //    column offset).
                    // 2. The last entry is on the same line, so the column offset for the entry we
                    //    are about to insert must be greater than or equal to the end column of
                    //    the last entry. It's valid for them to be equal because the end position
                    //    is not inclusive.
                    debug_assert!(
                        last_entry.end_position().row < entry.start_position().row
                            || (last_entry.end_position.row == entry.start_position().row
                                && last_entry.end_position.column <= entry.start_position().column)
                    );
                }
                entries.push(entry);
            }
        }
        entries
    }
}

impl<'a> From<VectorLeaf<'a>> for Entry<'a> {
    fn from(leaf: VectorLeaf<'a>) -> Self {
        Self {
            reference: leaf.reference,
            text: Cow::from(leaf.text),
            start_position: leaf.reference.start_position(),
            end_position: leaf.reference.start_position(),
            kind_id: leaf.reference.kind_id(),
        }
    }
}

impl<'a> Entry<'a> {
    /// Get the start position of an entry
    #[must_use]
    pub fn start_position(&self) -> Point {
        self.start_position
    }

    /// Get the end position of an entry
    #[must_use]
    pub fn end_position(&self) -> Point {
        self.end_position
    }
}

impl<'a> From<&'a Vector<'a>> for Vec<Entry<'a>> {
    fn from(ast_vector: &'a Vector<'a>) -> Self {
        ast_vector
            .leaves
            .iter()
            .flat_map(|entry| entry.split_on_graphemes(true))
            .collect()
    }
}

/// A vector that allows for linear traversal through the leafs of an AST.
///
/// This representation of the tree leaves is much more convenient for things like dynamic
/// programming, and provides useful for formatting.
#[derive(Debug)]
pub struct Vector<'a> {
    /// The leaves of the AST, build with an in-order traversal
    pub leaves: Vec<VectorLeaf<'a>>,

    /// The full source text that the AST refers to
    pub source_text: &'a str,
}

impl<'a> Eq for Entry<'a> {}

/// A wrapper struct for AST vector data that owns the data that the AST vector references
///
/// Ideally we would just have the AST vector own the actual string and tree, but it makes things
/// extremely messy with the borrow checker, so we have this wrapper struct that holds the owned
/// data that the vector references. This gets tricky because the tree sitter library uses FFI so
/// the lifetime references get even more mangled.
#[derive(Debug)]
pub struct VectorData {
    /// The text in the file
    pub text: String,

    /// The tree that was parsed using the text
    pub tree: TSTree,

    /// The file path that the text corresponds to
    pub path: PathBuf,
}

impl<'a> Vector<'a> {
    /// Create a `DiffVector` from a `tree_sitter` tree
    ///
    /// This method calls a helper function that does an in-order traversal of the tree and adds
    /// leaf nodes to a vector
    #[time("info", "ast::{}")]
    pub fn from_ts_tree(tree: &'a TSTree, text: &'a str) -> Self {
        let leaves = RefCell::new(Vec::new());
        build(&leaves, tree.root_node(), text);
        Vector {
            leaves: leaves.into_inner(),
            source_text: text,
        }
    }

    /// Return the number of nodes in the diff vector
    #[must_use]
    pub fn len(&self) -> usize {
        self.leaves.len()
    }

    /// Return whether there are any leaves in the diff vector.
    #[must_use]
    pub fn is_empty(&self) -> bool {
        self.leaves.is_empty()
    }
}

impl<'a> Index<usize> for Vector<'a> {
    type Output = VectorLeaf<'a>;

    fn index(&self, index: usize) -> &Self::Output {
        &self.leaves[index]
    }
}

impl<'a> Hash for VectorLeaf<'a> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.reference.kind_id().hash(state);
        self.text.hash(state);
    }
}

impl<'a> PartialEq for Entry<'a> {
    fn eq(&self, other: &Entry) -> bool {
        self.kind_id == other.kind_id && self.text == other.text
    }
}

impl<'a> PartialEq for Vector<'a> {
    fn eq(&self, other: &Vector) -> bool {
        if self.leaves.len() != other.leaves.len() {
            return false;
        }

        for i in 0..self.leaves.len() {
            let leaf = self.leaves[i];
            let other_leaf = other.leaves[i];

            if leaf != other_leaf {
                return false;
            }
        }
        true
    }
}

/// Recursively build a vector from a given node
///
/// This is a helper function that simply walks the tree and collects leaves in an in-order manner.
/// Every time it encounters a leaf node, it stores the metadata and reference to the node in an
/// `Entry` struct.
fn build<'a>(vector: &RefCell<Vec<VectorLeaf<'a>>>, node: tree_sitter::Node<'a>, text: &'a str) {
    // If the node is a leaf, we can stop traversing
    if node.child_count() == 0 {
        // We only push an entry if the referenced text range isn't empty, since there's no point
        // in having an empty text range. This also fixes a bug where the program would panic
        // because it would attempt to access the 0th index in an empty text range.
        if !node.byte_range().is_empty() {
            let node_text: &'a str = &text[node.byte_range()];
            // HACK: this is a workaround that was put in place to work around the Go parser which
            // puts newlines into their own nodes, which later causes errors when trying to print
            // these nodes. We just ignore those nodes.
            if node_text
                .replace("\r\n", "")
                .replace(['\n', '\r'], "")
                .is_empty()
            {
                return;
            }

            vector.borrow_mut().push(VectorLeaf {
                reference: node,
                text: node_text,
            });
        }
        return;
    }

    let mut cursor = node.walk();

    for child in node.children(&mut cursor) {
        build(vector, child, text);
    }
}

/// The different types of elements that can be in an edit script
#[derive(Debug, Eq, PartialEq)]
pub enum EditType<T> {
    /// An element that was added in the edit script
    Addition(T),

    /// An element that was deleted in the edit script
    Deletion(T),
}

impl<T> AsRef<T> for EditType<T> {
    fn as_ref(&self) -> &T {
        match self {
            Self::Addition(x) | Self::Deletion(x) => x,
        }
    }
}

impl<T> Deref for EditType<T> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
        match self {
            Self::Addition(x) | Self::Deletion(x) => x,
        }
    }
}

impl<T> DerefMut for EditType<T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        match self {
            Self::Addition(x) | Self::Deletion(x) => x,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::GrammarConfig;
    use tree_sitter::Parser;

    #[cfg(feature = "static-grammar-libs")]
    use crate::parse::generate_language;

    #[test]
    fn test_should_filter_node() {
        let exclude_kinds: HashSet<String> = HashSet::from(["comment".to_string()]);
        let mut mock_node = MockTSNodeTrait::new();
        mock_node.expect_kind().return_const("comment".to_owned());

        // basic scenario - expect that the excluded kind is ignored
        let processor = TreeSitterProcessor {
            split_graphemes: false,
            exclude_kinds: Some(exclude_kinds.clone()),
            include_kinds: None,
            ..Default::default()
        };
        assert!(!processor.should_include_node(&mock_node));

        // expect that it's still excluded if the included list also has an element that was excluded
        let processor = TreeSitterProcessor {
            split_graphemes: false,
            exclude_kinds: Some(exclude_kinds.clone()),
            include_kinds: Some(exclude_kinds),
            ..Default::default()
        };
        assert!(!processor.should_include_node(&mock_node));

        // Don't exclude anything, but only include types that our node is not
        let include_kinds: HashSet<String> = HashSet::from([
            "some_other_type".to_string(),
            "yet another type".to_string(),
        ]);
        let processor = TreeSitterProcessor {
            split_graphemes: false,
            exclude_kinds: None,
            include_kinds: Some(include_kinds),
            ..Default::default()
        };
        assert!(!processor.should_include_node(&mock_node));

        // include our node type
        let include_kinds: HashSet<String> = HashSet::from(["comment".to_string()]);
        let processor = TreeSitterProcessor {
            split_graphemes: false,
            exclude_kinds: None,
            include_kinds: Some(include_kinds),
            ..Default::default()
        };
        assert!(processor.should_include_node(&mock_node));

        // don't filter anything
        let processor = TreeSitterProcessor {
            split_graphemes: false,
            exclude_kinds: None,
            include_kinds: None,
            ..Default::default()
        };
        assert!(processor.should_include_node(&mock_node));
    }

    // NOTE: this has to be gated behind the 'static-grammar-libs' cargo feature, otherwise the
    // crate won't be built with the grammars bundled into the binary which means this won't be
    // able to load the markdown parser. It's possible that the markdown dynamic library is
    // available even if we don't compile the grammars statically but there's no guarantees of
    // which grammars are available dynamically, and we don't enforce that certain grammars have to
    // be available.
    #[cfg(feature = "static-grammar-libs")]
    #[test]
    fn test_strip_whitespace() {
        let md_parser = generate_language("python", &GrammarConfig::default()).unwrap();
        let mut parser = Parser::new();
        parser.set_language(&md_parser).unwrap();
        let text_a = "'''# A heading\nThis has no diff.'''";
        let text_b = "'''# A heading\nThis\nhas\r\nno diff.'''";
        let tree_a = parser.parse(text_a, None).unwrap();
        let tree_b = parser.parse(text_b, None).unwrap();
        {
            let processor = TreeSitterProcessor {
                strip_whitespace: true,
                ..Default::default()
            };
            let entries_a = processor.process(&tree_a, text_a);
            let entries_b = processor.process(&tree_b, text_b);
            assert_eq!(entries_a, entries_b);
        }
        {
            let processor = TreeSitterProcessor {
                strip_whitespace: false,
                ..Default::default()
            };
            let entries_a = processor.process(&tree_a, text_a);
            let entries_b = processor.process(&tree_b, text_b);
            assert_ne!(entries_a, entries_b);
        }
    }
}