1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
//! Structs and other convenience methods for handling logical concepts pertaining to diffs, such
//! as hunks.
use crate::input_processing::{EditType, Entry};
use crate::neg_idx_vec::NegIdxVec;
use anyhow::Result;
use logging_timer::time;
use serde::Serialize;
use std::fmt::Debug;
use std::iter::FromIterator;
use std::ops::Range;
use thiserror::Error;
/// Find the length of the common prefix between the ranges specified for `a` and `b`.
fn common_prefix_len<T: PartialEq>(
a: &[T],
a_range: Range<usize>,
b: &[T],
b_range: Range<usize>,
) -> usize {
let mut l = 0;
unsafe {
while a_range.start + l < a_range.end
&& b_range.start + l < b_range.end
&& a.get_unchecked(a_range.start + l) == b.get_unchecked(b_range.start + l)
{
l += 1;
}
}
l
}
/// Coordinates for different inputs
///
/// A coordinate pair that corresponds to the two inputs in a diff algorithm.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
struct Coordinates<T>
where
T: Debug + PartialEq + Eq + Clone + Copy,
{
/// The index in the old input
pub old: T,
/// The index in the new input
pub new: T,
}
/// Convert a range with into another numeric type.
///
/// This will panic if the values cannot be converted to the target type. This is better than using
/// `as` because it will explicitly panic instead of silently wrapping around.
fn convert_range<FromType, IntoType>(range: Range<FromType>) -> Range<IntoType>
where
FromType: TryInto<IntoType>,
<FromType as TryInto<IntoType>>::Error: std::fmt::Debug,
{
range.start.try_into().unwrap()..range.end.try_into().unwrap()
}
/// Find the length of the common suffix between the ranges specified for `a` and `b`.
/// The ranges are assumed to be [inclusive, exclusive).
fn common_suffix_len<T: PartialEq>(
a: &[T],
a_range: Range<usize>,
b: &[T],
b_range: Range<usize>,
) -> usize {
let mut l: isize = 1;
let a_range: Range<isize> = convert_range(a_range);
let b_range: Range<isize> = convert_range(b_range);
unsafe {
while a_range.end - l >= a_range.start
&& b_range.end - l >= b_range.start
&& a.get_unchecked::<usize>((a_range.end - l).try_into().unwrap())
== b.get_unchecked::<usize>((b_range.end - l).try_into().unwrap())
{
l += 1;
}
}
(l - 1).try_into().unwrap()
}
/// The edit information representing a line
#[derive(Debug, Clone, PartialEq, Eq, Serialize)]
pub struct Line<'a> {
/// The index of the line in the original document
pub line_index: usize,
/// The entries corresponding to the line
pub entries: Vec<Entry<'a>>,
}
impl<'a> Line<'a> {
#[must_use]
pub fn new(line_index: usize) -> Self {
Line {
line_index,
entries: Vec::new(),
}
}
}
/// A grouping of consecutive edit lines for a document
///
/// Every line in a hunk must be consecutive and in ascending order.
#[derive(Debug, Clone, PartialEq, Eq, Serialize)]
pub struct Hunk<'a>(pub Vec<Line<'a>>);
/// Types of errors that come up when inserting an entry to a hunk
#[derive(Debug, Error)]
pub enum HunkInsertionError {
#[error(
"Non-adjacent entry (line {incoming_line:?}) added to hunk (last line: {last_line:?})"
)]
NonAdjacentHunk {
incoming_line: usize,
last_line: usize,
},
#[error("Attempted to append an entry with a line index ({incoming_line:?}) less than the first line's index ({last_line:?})")]
PriorLine {
incoming_line: usize,
last_line: usize,
},
#[error("Attempted to append an entry with a column ({incoming_col:?}, line: {incoming_line:?}) less than the first entry's column ({last_col:?}, line: {last_line:?})")]
PriorColumn {
incoming_col: usize,
incoming_line: usize,
last_col: usize,
last_line: usize,
},
}
impl<'a> Hunk<'a> {
/// Create a new, empty hunk
#[must_use]
pub fn new() -> Self {
Hunk(Vec::new())
}
/// Returns the first line number of the hunk
///
/// This will return [None] if the internal vector is empty
#[must_use]
pub fn first_line(&self) -> Option<usize> {
self.0.first().map(|x| x.line_index)
}
/// Returns the last line number of the hunk
///
/// This will return [None] if the internal vector is empty
#[must_use]
pub fn last_line(&self) -> Option<usize> {
self.0.last().map(|x| x.line_index)
}
/// Append an [entry](Entry) to a hunk.
///
/// Entries can only be appended in ascending order (first to last). It is an error to append
/// entries out of order. For example, you can't insert an entry on line 1 after inserting an
/// entry on line 5.
pub fn push_back(&mut self, entry: Entry<'a>) -> Result<(), HunkInsertionError> {
let incoming_line_idx = entry.start_position().row;
// Create a new line if the incoming entry is on the next line. This will throw an error
// if we have an entry on a non-adjacent line or an out-of-order insertion.
if let Some(last_line) = self.0.last() {
let last_line_idx = last_line.line_index;
if incoming_line_idx < last_line_idx {
return Err(HunkInsertionError::PriorLine {
incoming_line: incoming_line_idx,
last_line: last_line_idx,
});
}
if incoming_line_idx - last_line_idx > 1 {
return Err(HunkInsertionError::NonAdjacentHunk {
incoming_line: incoming_line_idx,
last_line: last_line_idx,
});
}
if incoming_line_idx - last_line_idx == 1 {
self.0.push(Line::new(incoming_line_idx));
}
}
// The lines are empty, we need to add the first one
else {
self.0.push(Line::new(incoming_line_idx));
}
let last_line = self.0.last_mut().unwrap();
if let Some(&last_entry) = last_line.entries.last() {
let last_col = last_entry.end_position().column;
let last_line = last_entry.end_position().row;
let incoming_col = entry.start_position().column;
let incoming_line = entry.end_position().row;
if incoming_col < last_col {
return Err(HunkInsertionError::PriorColumn {
incoming_col,
last_col,
incoming_line,
last_line,
});
}
}
last_line.entries.push(entry);
Ok(())
}
}
impl<'a> Default for Hunk<'a> {
fn default() -> Self {
Self::new()
}
}
/// A generic type for diffs that source from one of two documents.
///
/// A lot of items in the diff are delineated by whether they come from the old document or the new
/// one. This enum generically defines an enum wrapper over those document types.
#[derive(Debug, Clone, PartialEq, Eq, Serialize)]
pub enum DocumentType<T: Debug + Clone + PartialEq + Serialize> {
Old(T),
New(T),
}
impl<T> AsRef<T> for DocumentType<T>
where
T: Debug + Clone + PartialEq + Serialize,
{
fn as_ref(&self) -> &T {
match self {
Self::Old(x) | Self::New(x) => x,
}
}
}
impl<T> AsMut<T> for DocumentType<T>
where
T: Debug + Clone + PartialEq + Serialize,
{
fn as_mut(&mut self) -> &mut T {
match self {
Self::Old(x) | Self::New(x) => x,
}
}
}
impl<T: Debug + Clone + PartialEq + Serialize> DocumentType<T> {
/// Move the inner object out and consume it.
fn consume(self) -> T {
match self {
Self::Old(x) | Self::New(x) => x,
}
}
}
/// A hunk with metadata about which document it came from.
pub type RichHunk<'a> = DocumentType<Hunk<'a>>;
/// The hunks that correspond to a document
///
/// This type implements a helper builder function that can take
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Hunks<'a>(pub Vec<Hunk<'a>>);
#[derive(Debug, Clone, PartialEq, Eq, Serialize)]
pub struct RichHunks<'a>(pub Vec<RichHunk<'a>>);
/// A builder struct for [`RichHunks`].
///
/// The builder struct allows us to maintain some state as we build [`RichHunks`].
pub struct RichHunksBuilder<'a> {
/// The hunks that we're trying to build
hunks: RichHunks<'a>,
/// The last old entry seen so far (if any).
last_old: Option<usize>,
/// The last new entry seen so far (if any).
last_new: Option<usize>,
}
impl<'a> RichHunksBuilder<'a> {
#[must_use]
pub fn new() -> Self {
Self {
hunks: RichHunks(Vec::new()),
last_old: None,
last_new: None,
}
}
/// Finalize building the hunks.
///
/// This consumes the builder, which means you won't be able to add to it any more.
#[must_use]
pub fn build(self) -> RichHunks<'a> {
self.hunks
}
/// Initialize a new hunk struct for the incoming entry if necessary.
///
/// This returns the hunk that the entry should be added to.
fn get_hunk_for_insertion(
&mut self,
incoming_entry: &DocumentType<Entry<'a>>,
) -> Result<usize, HunkInsertionError> {
let (mut last_idx, new_hunk) = match incoming_entry {
DocumentType::Old(_) => (self.last_old, DocumentType::Old(Hunk::new())),
DocumentType::New(_) => (self.last_new, DocumentType::New(Hunk::new())),
};
match last_idx {
// If there is no hunk for this type, we create a new one and will add the incoming
// entry to it.
None => {
self.hunks.0.push(new_hunk);
last_idx = Some(self.hunks.0.len() - 1);
}
// If there is a reference to the last hunk that corresponds to the incoming entry's
// document type, we check the line numbers and create a new hunk if necessary.
Some(idx) => {
let last_hunk = self.hunks.0[idx].as_ref();
let last_line = last_hunk.last_line();
// If the hunk is populated, we only add to it if the incoming entry is on the same
// line as the last hunk for the same type. Otherwise we break and create a new
// one. If the hunk is empty, we can obviously add to it, so we do nothing.
if let Some(last_line) = last_line {
let incoming_line = incoming_entry.as_ref().end_position.row;
if incoming_line < last_line {
return Err(HunkInsertionError::PriorLine {
incoming_line,
last_line,
});
}
// If we have a non-adjacent edit, we need to create a new hunk. If the last
// hunk for this document type isn't the last edit, we need to create a new
// hunk because the edit chain has been broken.
if incoming_line - last_line > 1 {
self.hunks.0.push(new_hunk);
last_idx = Some(self.hunks.0.len() - 1);
}
// Otherwise, the line number must be equal
}
}
};
match incoming_entry {
DocumentType::Old(_) => self.last_old = last_idx,
DocumentType::New(_) => self.last_new = last_idx,
}
Ok(last_idx.unwrap())
}
/// Add an entry to the hunks.
pub fn push_back(&mut self, entry_wrapper: DocumentType<Entry<'a>>) -> Result<()> {
let insertion_idx = self.get_hunk_for_insertion(&entry_wrapper)?;
self.hunks.0[insertion_idx]
.as_mut()
.push_back(entry_wrapper.consume())?;
Ok(())
}
}
impl<'a> Default for RichHunksBuilder<'a> {
fn default() -> Self {
Self::new()
}
}
impl<'a> Hunks<'a> {
#[must_use]
pub fn new() -> Self {
Hunks(Vec::new())
}
pub fn push_back(&mut self, entry: Entry<'a>) -> Result<()> {
if let Some(hunk) = self.0.last_mut() {
let res = hunk.push_back(entry);
// If the incoming edit is not adjacent that means we need to create a new edit hunk
if let Err(HunkInsertionError::NonAdjacentHunk {
incoming_line: _,
last_line: _,
}) = res
{
let mut hunk = Hunk::new();
hunk.push_back(entry)?;
self.0.push(hunk);
} else {
res.map_err(|x| anyhow::anyhow!(x))?;
}
} else {
self.0.push(Hunk::new());
self.0.last_mut().unwrap().push_back(entry)?;
}
Ok(())
}
}
impl<'a> Default for Hunks<'a> {
fn default() -> Self {
Self::new()
}
}
pub struct HunkAppender<'a>(pub Hunks<'a>);
impl<'a> FromIterator<Entry<'a>> for HunkAppender<'a> {
/// Create an instance of `Hunks` from an iterator over [entries](Entry).
///
/// The user is responsible for making sure that the hunks are in proper order, otherwise this
/// constructor may panic.
fn from_iter<T>(iter: T) -> Self
where
T: IntoIterator<Item = Entry<'a>>,
{
let mut hunks = Hunks::new();
for i in iter {
hunks.push_back(i).expect("Invalid iterator");
}
HunkAppender(hunks)
}
}
/// A difference engine provider
///
/// Any entity that implements this trait is responsible for providing a method
/// that computes the diff between two inputs.
pub trait Engine<'elem, T>
where
T: Eq + 'elem,
{
/// The container type to returned from the `diff` function
type Container;
/// Compute the shortest edit sequence that will turn `a` into `b`
fn diff(&self, a: &'elem [T], b: &'elem [T]) -> Self::Container;
}
#[derive(Eq, PartialEq, Copy, Clone, Debug, Default)]
pub struct Myers {}
impl<'elem, T> Engine<'elem, T> for Myers
where
T: Eq + 'elem + std::fmt::Debug,
{
type Container = Vec<EditType<&'elem T>>;
fn diff(&self, a: &'elem [T], b: &'elem [T]) -> Self::Container {
let mut res = Vec::new();
// We know the worst case is deleting everything from a and inserting everything from b
res.reserve(a.len() + b.len());
let mut frontiers = MyersFrontiers::new(a.len(), b.len());
Myers::diff_impl(&mut res, a, 0..a.len(), b, 0..b.len(), &mut frontiers);
res
}
}
/// Information relevant for a middle snake calculation
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord)]
pub struct MidSnakeInfo {
/// The index in `a` that corresponds to the middle snake
pub a_split: i32,
/// The index in `b` that corresponds to the middle snake
pub b_split: i32,
/// the full length of the optimal path between the two inputs
pub optimal_len: u32,
}
/// Split a range at the specified index
fn split_range(r: &Range<usize>, idx: usize) -> (Range<usize>, Range<usize>) {
(r.start..idx, idx..r.end)
}
/// The frontiers for the Myers diff algorithm
///
/// We define this externally to the recursive method so we can allocate once and reuse between
/// recursive calls.
pub struct MyersFrontiers {
/// Stores the longest path seen from the old input to the new input
pub forward: NegIdxVec<i32>,
/// Stores the longest path seen from the new input to the old input
pub reverse: NegIdxVec<i32>,
}
impl MyersFrontiers {
/// Construct frontiers for the given input sizes
fn new(old_len: usize, new_len: usize) -> Self {
let midpoint = ((old_len + new_len) as f32 / 2.00).ceil() as i32 + 1;
// The size of the frontier vector
let vec_length = (midpoint * 2) as usize;
MyersFrontiers {
forward: vec![0; vec_length].into(),
reverse: vec![0; vec_length].into(),
}
}
}
impl Myers {
/// A helper implementation function that handles the recursive end of finding a diff using
/// Myers' algorithm.
fn diff_impl<'elem, T: Eq + Debug + 'elem>(
res: &mut Vec<EditType<&'elem T>>,
old: &'elem [T],
mut old_range: Range<usize>,
new: &'elem [T],
mut new_range: Range<usize>,
frontiers: &mut MyersFrontiers,
) {
// Initial optimizations: we can skip the common prefix + suffix
let common_pref_len = common_prefix_len(old, old_range.clone(), new, new_range.clone());
old_range.start += common_pref_len;
new_range.start += common_pref_len;
let common_suf_len = common_suffix_len(old, old_range.clone(), new, new_range.clone());
// Need to make sure our begin/end ranges don't overlap
old_range.end = old_range.start.max(old_range.end - common_suf_len);
new_range.end = new_range.start.max(new_range.end - common_suf_len);
// We know if either or both of the inputs are empty, we don't have to bother finding the
// middle snake
if old_range.is_empty() && new_range.is_empty() {
return;
}
if old_range.is_empty() {
for i in new_range {
res.push(EditType::Addition(&new[i]));
}
return;
}
if new_range.is_empty() {
for i in old_range {
res.push(EditType::Deletion(&old[i]));
}
return;
}
let Coordinates {
old: x_start,
new: y_start,
} = Myers::middle_snake(old, old_range.clone(), new, new_range.clone(), frontiers);
// divide and conquer along the middle snake
let (old_first_half, old_second_half) = split_range(&old_range, x_start);
let (new_first_half, new_second_half) = split_range(&new_range, y_start);
Myers::diff_impl(res, old, old_first_half, new, new_first_half, frontiers);
Myers::diff_impl(res, old, old_second_half, new, new_second_half, frontiers);
}
/// Calculate the (x, y) coordinates of the midpoint of the optimal path.
///
/// This implementation directly derives from "An O(ND) Difference Algorithm and Its Variations"
/// by Myers. This will compute the location of the middle snake and the length of the optimal
/// shortest edit script.
fn middle_snake<T: Eq>(
old: &[T],
old_range: Range<usize>,
new: &[T],
new_range: Range<usize>,
frontiers: &mut MyersFrontiers,
) -> Coordinates<usize> {
let n = old_range.len() as i32;
let m = new_range.len() as i32;
let delta = n - m;
let is_odd = delta % 2 == 1;
let midpoint = ((m + n) as f32 / 2.00).ceil() as i32 + 1;
let fwd_front = &mut frontiers.forward;
let rev_front = &mut frontiers.reverse;
fwd_front[1] = 0;
rev_front[1] = 0;
for d in 0..=midpoint {
// Find the end of the furthest reaching forward d-path
for k in (-d..=d).rev().step_by(2) {
// k == -d and k != d are just bounds checks to make sure we don't try to compare
// values outside of the [-d, d] range. We check for the furthest reaching forward
// frontier by seeing which diagonal has the highest x value.
let mut x = if k == -d || (k != d && fwd_front[k + 1] >= fwd_front[k - 1]) {
// If the longest diagonal is from the vertically connected d - 1 path. The y
// component is implicitly added when we compute y below with a different k value.
fwd_front[k + 1]
} else {
// If the longest diagonal is from the horizontally connected d - 1 path. We
// add one here for the horizontal connection (x, y) -> (x + 1, y).
fwd_front[k - 1] + 1
};
let y = x - k;
// Coordinates of the first point in the snake
let (x0, y0) = (x, y);
// Extend the snake
if x < n && y < m {
debug_assert!(x >= 0);
debug_assert!(y >= 0);
let common_pref_len = common_prefix_len(
old,
old_range.start + (x as usize)..old_range.end,
new,
new_range.start + (y as usize)..new_range.end,
);
x += common_pref_len as i32;
}
fwd_front[k] = x;
// If delta is odd and k is in the defined range
if is_odd && (k - delta).abs() < d {
// If the path overlaps the furthest reaching reverse d - 1 path in diagonal k
// then the length of an SES is 2D - 1, and the last snake of the forward path
// is the middle snake.
let reverse_x = rev_front[-(k - delta)];
// We convert everything over to signed integers first so we can check for any
// overflow errors.
let old = (old_range.start as i32) + x0;
let new = (new_range.start as i32) + y0;
debug_assert!(
old >= (old_range.start as i32) && old <= (old_range.end as i32),
"expected old={} in {}..{}",
old,
old_range.start,
old_range.end,
);
debug_assert!(
new >= (new_range.start as i32) && new <= (new_range.end as i32),
"expected new={} in {}..{}",
new,
new_range.start,
new_range.end,
);
// NOTE: we can convert x and y to `usize` because they are both within
// the range of the length of the inputs, which are valid usize values. This property
// is also checked with assertions in debug releases.
if x + reverse_x >= n {
return Coordinates {
old: old as usize,
new: new as usize,
};
}
}
}
// Find the end of the furthest reaching reverse d-path
for k in (-d..=d).rev().step_by(2) {
// k == d and k != -d are just bounds checks to make sure we don't try to compare
// anything out of range, as explained above. In the reverse path we check to see
// which diagonal has the smallest *real* x value because we're trying to go from
// the bottom-right to the top-left of the matrix. Note that we're looking for the
// biggest x value in the reverse frontier, which will be subtracted from the total
// length.
let mut x = if k == -d || (k != d && rev_front[k + 1] >= rev_front[k - 1]) {
// If the longest diagonal is from the horizontally connected d - 1 path.
rev_front[k + 1]
} else {
// If the longest diagonal is from the vertically connected d - 1 path. The y
// value is implicitly handled when we compute y with a different k value.
rev_front[k - 1] + 1
};
let mut y = x - k;
// Advance the diagonal as far as possible
if x < n && y < m {
debug_assert!(x >= 0);
debug_assert!(y >= 0);
debug_assert!(n - x >= 0);
debug_assert!(m - y >= 0);
let common_suf_len = common_suffix_len(
old,
old_range.start..old_range.start + (n as usize) - (x as usize),
new,
new_range.start..new_range.start + (m as usize) - (y as usize),
);
x += common_suf_len as i32;
y += common_suf_len as i32;
}
rev_front[k] = x;
// If delta is even and k is in the defined range, check for an overlap
if !is_odd && (k - delta).abs() <= d {
let forward_x = fwd_front[-(k - delta)];
// If forward_x + reverse_x >= n, the forward and backward paths make up a full
// path, so we have a possible overlap. So return the furthest reaching reverse
// path as the middle snake.
// NOTE: that we can convert x and y to `usize` because they are both within
// the range of the length of the inputs, which are valid usize values.
if forward_x + x >= n {
let old = n - x + (old_range.start as i32);
let new = m - y + (new_range.start as i32);
debug_assert!(
old >= (old_range.start as i32) && old <= (old_range.end as i32),
"expected old={} in {}..{}",
old,
old_range.start,
old_range.end,
);
debug_assert!(
new >= (new_range.start as i32) && new <= (new_range.end as i32),
"expected new={} in {}..{}",
new,
new_range.start,
new_range.end,
);
return Coordinates {
old: old as usize,
new: new as usize,
};
}
}
}
}
unreachable!();
}
}
impl<'a> TryFrom<Vec<EditType<&Entry<'a>>>> for RichHunks<'a> {
type Error = anyhow::Error;
fn try_from(edits: Vec<EditType<&Entry<'a>>>) -> Result<Self, Self::Error> {
let mut builder = RichHunksBuilder::new();
for edit_wrapper in edits {
let edit = match edit_wrapper {
EditType::Addition(&edit) => DocumentType::New(edit),
EditType::Deletion(&edit) => DocumentType::Old(edit),
};
builder.push_back(edit)?;
}
Ok(builder.build())
}
}
/// Compute the hunks corresponding to the minimum edit path between two documents.
///
/// This will process the the AST vectors with the user-provided settings.
///
/// This will return two groups of [hunks](diff::Hunks) in a tuple of the form
/// `(old_hunks, new_hunks)`.
#[time("info", "diff::{}")]
pub fn compute_edit_script<'a>(old: &[Entry<'a>], new: &[Entry<'a>]) -> Result<RichHunks<'a>> {
let myers = Myers::default();
let edit_script = myers.diff(old, new);
RichHunks::try_from(edit_script)
}
#[cfg(test)]
mod tests {
use super::*;
use pretty_assertions::assert_eq as p_assert_eq;
use test_case::test_case;
/// A convenience function to invoke the a Myers diff
fn myers_diff<'a, T>(a: &'a [T], b: &'a [T]) -> Vec<EditType<&'a T>>
where
T: 'a + Eq + Debug,
{
let myers = Myers::default();
myers.diff(a, b)
}
#[test]
fn mid_snake_empty_input() {
let input_a = b"";
let input_b = b"";
let mut frontiers = MyersFrontiers::new(input_a.len(), input_b.len());
let mid_snake = Myers::middle_snake(
&input_a[..],
0..input_a.len(),
&input_b[..],
0..input_b.len(),
&mut frontiers,
);
let expected = Coordinates { old: 0, new: 0 };
p_assert_eq!(expected, mid_snake);
}
#[test]
fn mid_snake() {
let input_a = &b"ABCABBA"[..];
let input_b = &b"CBABAC"[..];
let mut frontiers = MyersFrontiers::new(input_a.len(), input_b.len());
let mid_snake = Myers::middle_snake(
input_a,
0..input_a.len(),
input_b,
0..input_b.len(),
&mut frontiers,
);
let expected = Coordinates { old: 4, new: 1 };
p_assert_eq!(expected, mid_snake);
}
#[test]
fn myers_diff_empty_inputs() {
let input_a: Vec<i32> = vec![];
let input_b: Vec<i32> = vec![];
let edit_script = myers_diff(&input_a, &input_b);
assert!(edit_script.is_empty());
}
#[test]
fn myers_diff_no_diff() {
let input_a: Vec<i32> = vec![0; 4];
let input_b: Vec<i32> = vec![0; 4];
let edit_script = myers_diff(&input_a, &input_b);
assert!(edit_script.is_empty());
}
#[test]
fn myers_diff_one_addition() {
let input_a: Vec<i32> = Vec::new();
let input_b: Vec<i32> = vec![0];
let expected = vec![EditType::Addition(&input_b[0])];
let edit_script = myers_diff(&input_a, &input_b);
p_assert_eq!(expected, edit_script);
}
#[test]
fn myers_diff_one_deletion() {
let input_a: Vec<i32> = vec![0];
let input_b: Vec<i32> = Vec::new();
let expected = vec![EditType::Deletion(&input_a[0])];
let edit_script = myers_diff(&input_a, &input_b);
p_assert_eq!(expected, edit_script);
}
#[test]
fn myers_diff_single_substitution() {
let myers = Myers::default();
let input_a = vec![1];
let input_b = vec![2];
let edit_script = myers.diff(&input_a[..], &input_b[..]);
let expected = vec![
EditType::Addition(&input_b[0]),
EditType::Deletion(&input_a[0]),
];
p_assert_eq!(expected, edit_script);
}
#[test]
fn myers_diff_single_substitution_with_common_elements() {
let myers = Myers::default();
let input_a = vec![0, 0, 0];
let input_b = vec![0, 1, 0];
let edit_script = myers.diff(&input_a[..], &input_b[..]);
let expected = vec![
EditType::Addition(&input_b[1]),
EditType::Deletion(&input_a[1]),
];
p_assert_eq!(expected, edit_script);
}
#[test_case(b"BAAA", b"CAAA" => 0 ; "no common prefix")]
#[test_case(b"AAABA", b"AAACA" => 3 ; "with common prefix")]
fn common_prefix(a: &[u8], b: &[u8]) -> usize {
common_prefix_len(a, 0..a.len(), b, 0..b.len())
}
#[test_case(b"AAAB", b"AAAC" => 0 ; "no common suffix")]
#[test_case(b"ABAAA", b"ACAAA" => 3 ; "with common suffix")]
fn common_suffix(a: &[u8], b: &[u8]) -> usize {
common_suffix_len(a, 0..a.len(), b, 0..b.len())
}
}