1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
use super::tensors::{ContravariantIndex, CovariantIndex, Matrix, Tensor};
use generic_array::{ArrayLength, GenericArray};
use std::ops::{Index, IndexMut};
use typenum::Pow;
use typenum::consts::U2;
use typenum::uint::Unsigned;
pub trait CoordinateSystem: Sized {
type Dimension: Unsigned + ArrayLength<f64> + ArrayLength<usize>;
fn small(_: &Point<Self>) -> f64 {
0.01
}
fn dimension() -> usize {
Self::Dimension::to_usize()
}
}
pub struct Point<T: CoordinateSystem> {
x: GenericArray<f64, T::Dimension>,
}
impl<T> Point<T>
where T: CoordinateSystem
{
pub fn new(coords: GenericArray<f64, T::Dimension>) -> Point<T> {
Point { x: coords }
}
pub fn from_slice(coords: &[f64]) -> Point<T> {
Point { x: GenericArray::clone_from_slice(coords) }
}
}
impl<T> Clone for Point<T>
where T: CoordinateSystem
{
fn clone(&self) -> Point<T> {
Point::new(self.x.clone())
}
}
impl<T> Copy for Point<T>
where T: CoordinateSystem,
<T::Dimension as ArrayLength<f64>>::ArrayType: Copy
{
}
impl<T> Index<usize> for Point<T>
where T: CoordinateSystem
{
type Output = f64;
fn index(&self, idx: usize) -> &f64 {
&self.x[idx]
}
}
impl<T> IndexMut<usize> for Point<T>
where T: CoordinateSystem
{
fn index_mut(&mut self, idx: usize) -> &mut f64 {
&mut self.x[idx]
}
}
impl<T> PartialEq<Point<T>> for Point<T>
where T: CoordinateSystem
{
fn eq(&self, rhs: &Point<T>) -> bool {
(0..T::dimension()).all(|i| self[i] == rhs[i])
}
}
impl<T> Eq for Point<T> where T: CoordinateSystem {}
pub trait ConversionTo<T: CoordinateSystem + 'static>: CoordinateSystem
where T::Dimension: Pow<U2>,
<T::Dimension as Pow<U2>>::Output: ArrayLength<f64>
{
fn convert_point(p: &Point<Self>) -> Point<T>;
fn jacobian(p: &Point<Self>) -> Matrix<T> {
let d = Self::dimension();
let mut result = Matrix::zero(Self::convert_point(p));
let h = Self::small(p);
for j in 0..d {
let mut x = p.clone();
x[j] = x[j] - h;
let y1 = Self::convert_point(&x);
x[j] = x[j] + h * 2.0;
let y2 = Self::convert_point(&x);
for i in 0..d {
let index = [i, j];
result[&index[..]] = (y2[i] - y1[i]) / (2.0 * h);
}
}
result
}
fn inv_jacobian(p: &Point<Self>) -> Tensor<T, (CovariantIndex, ContravariantIndex)> {
ConversionTo::<T>::jacobian(p).inverse().unwrap()
}
}